
Cloudian HyperStore
Admin API Reference

Version 7.5.2

This page left intentionally blank.

Confidentiality Notice

The information contained in this document is confidential to, and is the intellectual property of, Cloudian,
Inc. Neither this document nor any information contained herein may be (1) used in any manner other than
to support the use of Cloudian software in accordance with a valid license obtained from Cloudian, Inc, or (2)
reproduced, disclosed or otherwise provided to others under any circumstances, without the prior written per-
mission of Cloudian, Inc. Without limiting the foregoing, use of any information contained in this document in
connection with the development of a product or service that may be competitive with Cloudian software is
strictly prohibited. Any permitted reproduction of this document or any portion hereof must be accompanied
by this legend.

This page left intentionally blank.

Contents

Chapter 1. Introduction 9
1.1. HyperStore Admin API Introduction 9

1.1.1. Admin API Behavior in Multi-Region Systems 9

1.1.2. Admin API Logging 10

1.2. Admin API Methods List 10
1.3. Common Status Codes and Headers 13

1.3.1. CommonResponse StatusCodes 13

1.3.2. CommonRequest and Response Headers 14

1.4. cURL Examples 15
1.5. HTTP and HTTPS for Admin API Access 16
1.6. HTTP(S) Basic Authentication for Admin API Access 17

1.6.1. Checking the Admin API'sCurrent HTTP(S) BasicAuth Password 17

1.6.2. Changing the Admin API'sHTTP(S) BasicAuth Password 17

1.7. Role-Based Access to Admin API Operations 19

1.7.1. Comparing the Admin API to the IAM API with RBAC Extensions 19

1.7.2. Administrative ActionsSupported by the IAM API 20

1.7.3. Giving Administrative Action Privileges to IAM Users 22

1.7.4. Using admin_client.py to Call the IAM Service Extensions for Administrative Actions 23

Chapter 2. allowlist 27
2.1. GET /allowlist 27
2.2. POST /allowlist 28
2.3. POST /allowlist/list 30

Chapter 3. billing 33
3.1. GET /billing 33
3.2. POST /billing 39

Chapter 4. bppolicy 45
4.1. GET /bppolicy/bucketsperpolicy 45
4.2. GET /bppolicy/listpolicy 46

Chapter 5. bucketops 49
5.1. GET /bucketops/id 49
5.2. GET /bucketops/gettags 50
5.3. POST /bucketops/purge 52

Chapter 6. group 57
6.1. DELETE /group 57
6.2. GET /group 58
6.3. GET /group/list 60
6.4. GET /group/ratingPlanId 63
6.5. POST /group 64
6.6. POST /group/ratingPlanId 65
6.7. PUT /group 66

Chapter 7. monitor 73
7.1. DELETE /monitor/notificationrule 73
7.2. GET /monitor/events 74
7.3. GET /monitor/nodelist 78
7.4. GET /monitor/host 79
7.5. GET /monitor 91
7.6. GET /monitor/history 98
7.7. GET /monitor/notificationrules 100
7.8. POST /monitor/acknowledgeevents 101
7.9. POST /monitor/notificationruleenable 103
7.10. POST /monitor/notificationrule 104
7.11. PUT /monitor/notificationrule 105

Chapter 8. permissions 113
8.1. GET /permissions/publicUrl 113
8.2. POST /permissions/publicUrl 115

Chapter 9. qos 119
9.1. DELETE /qos/limits 119
9.2. GET /qos/limits 120
9.3. POST /qos/limits 125

Chapter 10. ratingPlan 129
10.1. DELETE /ratingPlan 129
10.2. GET /ratingPlan 130
10.3. GET /ratingPlan/list 132
10.4. POST /ratingPlan 133
10.5. PUT /ratingPlan 134

Chapter 11. system 139
11.1. GET /system/audit 139
11.2. GET /system/bucketcount 142
11.3. GET /system/bucketlist 143
11.4. GET /system/bucketusage 145

11.4.1. Syntax 145

11.4.2. Parameter Descriptions 145

11.4.3. Usage Notes 145

11.4.4. Example Using cURL 146

11.4.5. Response Codes 146

11.5. GET /system/bytecount 147
11.6. GET /system/bytestiered 149
11.7. GET /system/dcnodelist 150
11.8. GET /system/groupbytecount 150
11.9. GET /system/groupobjectcount 153
11.10. GET /system/license 155
11.11. GET system/objectcount 160
11.12. GET /system/objectlockenabled 162
11.13. GET /system/token/challenge 163
11.14. GET /system/version 164
11.15. POST /system/processProtectionPolicy 165
11.16. POST /system/repairusercount 166

Chapter 12. tiering 167
12.1. DELETE /tiering/credentials 167
12.2. DELETE /tiering/azure/credentials 168
12.3. DELETE /tiering/spectra/credentials 168
12.4. GET /tiering/credentials 169
12.5. GET /tiering/credentials/src 170
12.6. GET /tiering/azure/credentials 171
12.7. GET /tiering/spectra/credentials 172
12.8. POST /tiering/credentials 172
12.9. POST /tiering/azure/credentials 174
12.10. POST /tiering/spectra/credentials 175

Chapter 13. usage 177
13.1. DELETE /usage 177
13.2. GET /usage 179
13.3. POST /usage/bucket 195
13.4. POST /usage/repair 197
13.5. POST /usage/repair/bucket 198
13.6. POST /usage/repair/dirtyusers 199
13.7. POST /usage/repair/user 201
13.8. POST /usage/rollup 202
13.9. POST /usage/storage 203
13.10. POST /usage/storageall 204

Chapter 14. user 205
14.1. DELETE /user 206
14.2. DELETE /user/credentials 207
14.3. DELETE /user/deleted 208
14.4. DELETE /user/mfa/deleteDevice 209
14.5. GET /user 210
14.6. GET /user/credentials 213
14.7. GET /user/credentials/list 215
14.8. GET /user/credentials/list/active 218
14.9. GET /user/islocked 220
14.10. GET /user/list 222
14.11. GET /user/mfa/list 226
14.12. GET /user/password/verify 227
14.13. GET /user/ratingPlan 228
14.14. GET /user/ratingPlanId 231
14.15. POST /user 232
14.16. POST /user/credentials 233
14.17. POST /user/credentials/status 234
14.18. POST /user/mfa/createDevice 235
14.19. POST /user/mfa/deactivateDevice 237
14.20. POST /user/mfa/enableDevice 238
14.21. POST /user/mfa/resyncDevice 240
14.22. POST /user/mfa/verify 241
14.23. POST /user/password 243
14.24. POST /user/ratingPlanId 244
14.25. POST /user/unlock 245
14.26. PUT /user 247
14.27. PUT /user/credentials 252

Chapter 1. Introduction

1.1. HyperStore Admin API Introduction
Cloudian HyperStore provides a RESTful HTTP API through which you can provision users and groups, man-
age rating plans and quality of service (QoS) controls, retrieve monitoring data, and perform other admin-
istrative tasks. This Admin API is implemented by the HyperStore Admin Service.

By default the HTTPS listening port for the Admin Service is 19443 and the HTTP port is 18081. In HyperStore
systems for which the first installed version was 6.0.2 or later, the Admin Service supports only HTTPS con-
nections, and clients are required to use Basic Authentication. (For more detail see "HTTP and HTTPS for
Admin API Access" (page 16) and "HTTP(S) Basic Authentication for Admin API Access" (page 17)).

The Cloudian Management Console (CMC) accesses the Admin API to implement its provisioning and report-
ing functions. You also have the option of accessing the Admin API directly, using a command line tool such as
cURL or a REST client application of your own creation. For information about using cURL see "cURL
Examples" (page 15).

HyperStore Admin API response payloads are JSON encoded. For POST or PUT requests that require a
request payload, the request payloads must be JSON encoded as well.

IMPORTANT ! The Admin API is not designed to be exposed to end users of the Cloudian HyperStore
storage service. It is intended to be accessed only within an internal network -- by the CMC and by sys-
tem administrators using other types of clients (such as cURL). Do not expose the Admin Service to an
external network.

1.1.1. Admin API Behavior in Multi-Region Systems
If your HyperStore system has multiple service regions, then:

l The Admin Service in the default service region supports executing all of the Admin API operations in
this document.

l The Admin Service in regions other than the default region supports executing only the following sub-
set of Admin API operations:

o POST /usage/storage

o POST /usage/storageall

o POST /usage/rollup

o POST /usage/repair/dirtyusers

o POST /bucketops/purge

If in a non-default region you send your local Admin Service a request to execute an operation other than those
listed above, you will receive a 403:Forbidden response.

Consequently, in a multi-region system your DNS configurationmust resolve the Admin Service endpoint to
nodes in the default service region. The CMC will use this endpoint to submit requests to the Admin API. And
if you access the Admin API directly -- through a command line tool or a client application of your own creation

9

Chapter 1. Introduction

-- you must submit the requests to nodes in the default service region (with the exception of the calls listed
above)

For API calls that involve retrieving data from multiple regions, this is all handled by the Admin Service in the
default region. For example in a GET /usage call submitted to the Admin Service in your default service region
you can retrieve service usage data for all of your regions or for any single one of your regions.

1.1.2. Admin API Logging
The Admin Service generates an application log and also a request log that records information about every
request submitted to the Admin API. For detail about these logs see "Admin Service Logs" in the Logging sec-
tion of the Cloudian HyperStore Administrator's Guide.

1.2. Admin API Methods List
The table below shows all of the HyperStore Admin API methods. For more detail about a method or methods,
click on the corresponding Resource link.

Resource Method Purpose

allowlist

GET /allowlist Get allowlist content

POST /allowlist Change allowlist content (by request body object)

POST /allowlist/list Change allowlist content (by query parameters)

billing
GET /billing Get a bill for a user or group

POST /billing Create a bill for a user or group

bppolicy
GET /bppolicy/bucketsperpolicy Get list of buckets using each storage policy

GET /bppolicy/listpolicy Get list of storage policy names and IDs

bucketops

GET /bucketops/id Get a bucket's canonical ID

GET /bucketops/gettags Get bucket tags for users in a group

POST /bucketops/purge Delete all the objects in a bucket

group

DELETE /group Delete a group

GET /group Get a group's profile

GET /group/list Get a list of group profiles

GET /group/ratingPlanId Get a group's rating plan ID

POST /group Change a group's profile

POST /group/ratingPlanId Assign a rating plan to a group

PUT /group Create a new group

monitor

DELETE /mon-
itor/notificationrule

Delete a notification rule

GET /monitor/events Get the event list for a node

GET /monitor/nodelist Get the list of monitored nodes

GET /monitor/host Get current monitoring statistics for a node

GET /monitor Get current monitoring statistics for a service region

10

1.2. Admin API Methods List

Resource Method Purpose

GET /monitor/history Get historical monitoring statistics for a node

GET /monitor/notificationrules Get the list of notification rules

POST /mon-
itor/acknowledgeevents

Acknowledge monitoring events

POST /mon-
itor/notificationruleenable

Enable or disable notification rules

POST /monitor/notificationrule Change a notification rule

PUT /monitor/notificationrule Create a new notification rule

permissions
GET /permissions/publicUrl Get public URL permissions for an object

POST /permissions/publicUrl Create or change public URL permissions for an object

qos

DELETE /qos/limits Delete QoS settings for a user or group

GET /qos/limits Get QoS settings for a user or group

POST /qos/limits Create QoS settings for a user or group

ratingPlan

DELETE /ratingPlan Delete a rating plan

GET /ratingPlan Get a rating plan

GET /ratingPlan/list Get the list of rating plans in the system

POST /ratingPlan Change a rating plan

PUT /ratingPlan Create a new rating plan

system

GET /system/audit Get summary counts for system

GET /system/bucketcount Get count of buckets owned by a group's members

GET /system/bucketusage
Get stored byte and object counts for each bucket owned
by a group's members

GET /system/bucketlist Get list of buckets owned by a group's members

GET /system/bytecount Get stored byte count for the system, a group, or a user

GET /system/bytestiered Get tiered byte count for the system, a group, or a user

GET /system/dcnodelist Get list of data centers and nodes

GET /system/groupbytecount Get stored byte counts for all of a group's users

GET /system/groupobjectcount Get stored object counts for all of a group's users

GET /system/license Get HyperStore license terms

GET system/objectcount Get stored object count for the system, a group, or a user

GET /system/objectlockenabled Get Object Lock enabled/disabled status

GET /system/token/challenge Get token challenge to provide to Cloudian Support

GET /system/version Get HyperStore system version

POST /sys-
tem/processProtectionPolicy

Process pending storage policy deletion or creation jobs

POST /system/repairusercount Reconcile user counts in Redis and Cassandra

"tiering"
(page 167)

DELETE /tiering/credentials
Delete a tiering credential for Amazon, Google, or other
S3-compliant destination

11

Chapter 1. Introduction

Resource Method Purpose

DELETE /tier-
ing/azure/credentials

Delete a tiering credential for Azure

DELETE /tier-
ing/spectra/credentials

Delete a tiering credential for Spectra

GET /tiering/credentials
Get a tiering credential for Amazon, Google, or other S3-
compliant destination

GET /tiering/credentials/src
Check whether a bucket uses a bucket-specific or system
default tiering credential

GET /tiering/azure/credentials Get a tiering credential for Azure

GET /tiering/spectra/credentials Get a tiering credential for Spectra

POST /tiering/credentials
Post a tiering credential for Amazon, Google, or other S3-
compliant destination

POST /tiering/azure/credentials Post a tiering credential for Azure

POST /tier-
ing/spectra/credentials

Post a tiering credential for Spectra

usage

DELETE /usage Delete usage data

GET /usage Get usage data for group, user, or bucket

POST /usage/bucket Get raw usage data for multiple buckets

POST /usage/repair Repair storage usage data for group or system

POST /usage/repair/bucket Retrieve total bytes and total objects for a bucket

POST /usage/repair/dirtyusers Repair storage usage data for users with recent activity

POST /usage/repair/user Repair storage usage data for a user

POST /usage/rollup Roll up usage data

POST /usage/storage Post raw storage usage data for users with recent activity

POST /usage/storageall Post raw storage usage data for all users

12

1.3. Common Status Codes and Headers

Resource Method Purpose

user

DELETE /user Delete a user

DELETE /user/credentials Delete a user's S3 security credential

DELETE /user/deleted Purge profile data of a deleted user or users

DELETE /user/mfa/deleteDevice Delete an MFA device from a user's account

GET /user Get a user's profile

GET /user/credentials
Get a user's S3 secret key corresponding to a supplied
access key

GET /user/credentials/list Get a user's list of S3 security credentials

GET /user/credentials/list/active Get a user's list of active S3 security credentials

GET /user/islocked Get a user's lock-out status

GET /user/list Get a list of user profiles

GET /user/mfa/list Get a list of a user's MFA devices

GET /user/password/verify Verify a user's supplied password

GET /user/ratingPlan Get a user's rating plan content

GET /user/ratingPlanId Get a user's rating plan ID

POST /user Change a user's profile

POST /user/credentials Post a user's supplied S3 credential

POST /user/credentials/status Deactivate or reactivate a user's S3 credential

POST /user/mfa/createDevice Create a virtual MFA device for a user

POST /user-
/mfa/deactivateDevice

Deactivate a user's MFA device

POST /user/mfa/enableDevice Activate an MFA device for a user

POST /user/mfa/resyncDevice Resync a user's MFA device

POST /user/mfa/verify Verify a user's supplied MFA code

POST /user/password Create or change a user's password

POST /user/ratingPlanId Assign a rating plan to a user

POST /user/unlock Unlock a locked-out user

PUT /user Create a new user

PUT /user/credentials Create a new S3 credential for a user

1.3. Common Status Codes and Headers

1.3.1. CommonResponse Status Codes
The following HTTP Status Codes are common to most or all Admin API methods. Each method may return
these codes, in addition to method-specific status codes indicated in the method documentation.

Status Code Description

200 OK

13

Chapter 1. Introduction

Status Code Description

401 Unauthorized

403

Not allowed because only the Admin API service in the default region can execute this
method.

The only Admin API methods that are allowed in non-default regions of a multi-region
deployment are:

o POST /usage/storage

o POST /usage/storageall

o POST /usage/rollup

o POST /usage/repair/dirtyusers

o POST /bucketops/purge

For any other Admin API method, submitting the method request to a non-default
region’s Admin Service will result in the 403 response.

404

Not found

Note URIs for the Admin API are case-sensitive. If you submit a request
wherein the case of the specified request resource and URI parameters does
not match the case documented in this Admin API Guide — or a request
wherein the URI contains any other typographical error — the system will
return a 404 error response.

500 Internal Server Error

503 Service Unavailable Error

1.3.2. CommonRequest and Response Headers

1.3.2.1. Common Request Headers

For PUT requests, the Content-Type header should be set to "application/json". For POST requests, the Con-
tent-Type header should be set to "application/json", "application/x-www-form-urlencoded", or "multipart/form-
data".

Depending on the request type and the result, the response from the Admin API may be in format applic-
ation/json, text/html, or text/plain. So in your requests do not use an Accept header that excludes these content
types.

1.3.2.2. Common Response Headers

In responses, the Content-Type will be either "application/json", "text/html", or "text/plain" depending on the
type of request being processed and the result.

14

1.4. cURL Examples

1.4. cURL Examples
This Admin API documentation includes examples using the open source command-line utility cURL. When a
JSON object is the expected response payload, the example commands pipe the output through the standard
Python tool mjson.tool so that the JSON pretty-prints. If you wish you can copy the commands from the doc-
umentation, paste them on to your command line, customize them appropriately, and the commands should
work against your HyperStore Admin Service (so long as you have cURL and Python on your local machine).

Here is a sample command, for retrieving a user group's profile:

curl -X GET -k -u sysadmin:password \

https://localhost:19443/group?groupId=QA | python -mjson.tool

With this example you would:

l Replace sysadmin and password with whatever the Admin API HTTP(S) Basic Authentication user
name and password are in your HyperStore system . For information about how to find the current Basic
Auth user name and password -- and about the option of using user name and password variables in
your cURL commands rather than the explicit user name and password -- see "Checking the Admin
API's Current HTTP(S) Basic Auth Password" (page 17).

l Replace localhost with the IP address of one of your HyperStore nodes in the default service region
(unless you're running cURL from a HyperStore node in the default region, in which case you can leave
it as localhost).

Note If you have a HyperStore Single-Node system, your "default service region" consists of just
your one node.

l Replace QA with the name of one of your user groups.

Note that the backslash in this and other examples indicates line continuation -- telling the Linux shell to ignore
the newline for purposes of running the command. These are used in the examples so that a long command
can be split to multiple lines in this documentation, while still allowing you to copy all the text (including the
backslash) and paste it on your command line and be able to run the command.

Note By default the Admin Server uses a self-signed SSL certificate and so in the example cURL com-
mands the "-k" flag is used to disable certificate checking.

In cases where a JSON object is required as the request payload, the examples use the cURL "-d" flag to ref-
erence the name of a text file that contains the JSON object. For example:

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:password \

-d @group_QA.txt https://localhost:19443/group

In the full documentation the content of the referenced text file is also shown. Note that if a request includes mul-
tiple query parameters with ampersand delimitation, the URL must be enclosed in single quotes -- as in this
example which deletes a user:

curl -X DELETE -k -u sysadmin:password \

'https://localhost:19443/user?userId=John&groupId=QA'

15

https://curl.haxx.se/

Chapter 1. Introduction

1.5. HTTP and HTTPS for Admin API Access
The Admin Service by default requires clients to use HTTPS and rejects attempts to connect with regular HTTP
(unless your original HyperStore system was older than version 6.0.2; see the next section below). For its
HTTPS implementation the Admin Service by default uses a self-signed certificate that is generated during
HyperStore installation. For information about managing SSL certificates in HyperStore see HTTPS Feature
Overview.

The Admin Service requires Basic Authentication from connecting HTTP(S) clients. For more information includ-
ing how to customize the required Basic Authentication password see "HTTP(S) Basic Authentication for
Admin API Access" (page 17).

If Your Original HyperStore Install Was Older Than Version 6.0.2:

If your original HyperStore install was older than version 6.0.2 and you have upgraded to the current version,
the Admin Service by default accepts regular HTTP requests (through port 18081) as well as HTTPS requests
(through port 19443). Also for such systems, the CMC uses regular HTTP when submitting requests to the
Admin Service.

If you want the Admin Service to accept only HTTPS requests from clients -- and to reject regular
HTTP requests -- follow the steps below. Following these steps also has the effect of reconfiguring the CMC so
that it uses exclusively HTTPS when submitting requests to the Admin Service.

1. On your Configuration Master, open this configuration file in a text editor:

/etc/cloudian-7.5.2-puppet/manifests/extdata/common.csv

2. Anywhere in the "S3/Admin Services" section of common.csv, add this line:

admin_secure,true

Note By default the "admin_secure" setting does not appear in the common.csv file for systems
that were originally installed as version 6.0.2 or older (even after the upgrade process). You
must manually add an "admin_secure" line to the file, set to "true" as shown above.

Save your change and close the file.

3. Still on your Configuration Master node, change into the installation staging directory and launch the
HyperStore installer:

./cloudianInstall.sh

If you are using the HyperStore Shell

If you are using the HyperStore Shell (HSH) as a Trusted user, from any directory on the Configuration
Master node you can launch the installer with this command:

$ hspkg install

Once launched, the installer's menu options (such as referenced in the steps below) are the same
regardless of whether it was launched from the HSH command line or the OS command line.

4. From the main menu select "Cluster Management", and then select "Push Configuration Settings to
Cluster". Follow the prompts to trigger a Puppet push out to the cluster.

5. Return to the "Cluster Management" menu, then select "Manage Services". Select the S3 Service, then
enter "restart". This automatically restarts the Admin Service as well as the S3 Service.

16

1.6. HTTP(S) Basic Authentication for Admin API Access

6. From the same menu, restart your CMC service. The CMC needs to be restarted so that it can update its
configuration settings and start using exclusively HTTPS to communicate with the Admin Service.

1.6. HTTP(S) Basic Authentication for Admin API Access
The Admin Service requires that clients use HTTP(S) Basic Authentication credentials (user name and pass-
word) when connecting to the service. By default the required user name for this purpose is "sysadmin" and the
default password is either a randomly generated password unique to your system (if your original HyperStore
install was version 7.2.2 or newer) or "public" (if your original HyperStore install was older than version 7.2.2).
If the Admin API HTTP(S) Basic Authentication password in your system is "public", you should change it
to something more secure. Even if the password is a random one generated upon system install, you may still
wish to change it to a password of your own creation.

Note If you have a HyperStore Single-Node system, the "Configuration Master" referred to in this sec-
tion is just your one node, and likewise the "cluster" referred to in this section is just your one node.

1.6.1. Checking the Admin API's Current HTTP(S) Basic Auth Password
To run Admin API calls you will need to supply the Admin API's current HTTP(S) Basic Authentication user
name and password. You can check to see what the current user name and password are in either of these
ways:

l On the In the configuration file common.csv check the value of the admin_auth_user and admin_auth_
pass settings. Note that when submitting Admin API calls you use the clear text version of the Basic
Auth password, not the Jetty-obfuscated version.

l On any HyperStore node, run these commands to retrieve the current Basic Auth user name and pass-
word:

hsctl config get admin.auth.username

sysadmin

hsctl config get admin.auth.password

test1234

If you are running cURL from a HyperStore node, if you wish you can use the hsctl commands above as vari-
ables within a call to the Admin API, and the current Basic Auth user name and password will be automatically
retrieved. The example below executes the Admin API's GET /system/version call.

curl -X GET -k -u $(hsctl config get admin.auth.username):$(hsctl config get admin.auth.password) \

https://localhost:19443/system/version

7.4 Compiled: 2021-11-11 16:30

1.6.2. Changing the Admin API's HTTP(S) Basic Auth Password

Note If your original HyperStore install was older than version 6.0.2, the Admin Service by default does
not require Basic Authentication. The procedure below includes instructions for enabling the Basic
Authentication requirement, if it is not already enabled in your system.

17

Chapter 1. Introduction

1. To change the Admin Service HTTP(S) Basic Authentication password, start by logging into the Con-
figuration Master node and using the Jetty password tool that’s included in your HyperStore package to
generate a Jetty-obfuscated version of your desired password. The following example runs the tool to
generate a Jetty-obfuscated version of the password "test1234":

/opt/cloudian/tools/jetty_password.sh test1234

test1234

OBF:1mf31j8x1lts1ltu1lq41lq61j651mbj

MD5:16d7a4fca7442dda3ad93c9a726597e4

After running the tool, copy or make a note of the clear text version of the new password (test1234 in the
example above) and the "OBF" (Jetty-obfuscated) version of the new password; you will need to supply
them in a later step of this procedure. The "OBF" prefix is not a part of the obfuscated password -- in the
example above the obfuscated password starts with 1mf31...

If you are using the HyperStore Shell...

If you are using the HyperStore Shell, you do not need to include the path to the tool in the command --
simply run it as show below:

sa_admin@node1$ jetty_password.sh test1234

test1234

OBF:1mf31j8x1lts1ltu1lq41lq61j651mbj

MD5:16d7a4fca7442dda3ad93c9a726597e4

2. Still on the Configuration Master node, open this configuration file in a text editor:

/etc/cloudian-7.5.2-puppet/manifests/extdata/common.csv

3. In common.csv edit these settings, then save and close the file:

l admin_auth_user: Set to the user name you want to use for HTTP(S) Basic Authentication for the
Admin Service (or just leave this at the default which is "sysadmin").

l admin_auth_pass: Set to a quote-enclosed comma-separated pair: "<Jetty_obfuscated_pass-
word>, <cleartext_password>". The obfuscated version is what you generated in Step 1, and the
clear text version is the plain password without obfuscation. For example, "1mf31j8x1lt-
s1ltu1lq41lq61j651mbj,test1234".

l admin_auth_enabled: Set to true, if it's not already set to true (it will be true by default if your ori-
ginal HyperStore install was 6.0.2 or newer).

Note Leave the admin_auth_realm setting at its default of "CloudianAdmin"

4. Still on the Configuration Master node, use the installer to:

a. Push your changes to the cluster.

b. Restart the S3 Service (doing so will automatically restart the Admin Service as well).

c. Restart the CMC (the CMC needs to be restarted so that it can update its configuration settings
for using Basic Authentication when communicating with the Admin Service).

If you need more detailed instructions for this step see "Pushing Configuration File Edits to the Cluster
and Restarting Services" in the System Configuration section of the Cloudian HyperStore Admin-
istrator's Guide.

5. Still on the Configuration Master node, run this command:

hsctl config apply ALL

18

1.7. Role-Based Access to Admin API Operations

1.7. Role-Based Access to Admin API Operations
Subjects covered in this section:

l Introduction (immediately below)

l "Comparing the Admin API to the IAM API with RBAC Extensions" (page 19)

l "Administrative Actions Supported by the IAM API" (page 20)

l "Giving Administrative Action Privileges to IAM Users" (page 22)

l "Using admin_client.py to Call the IAM Service Extensions for Administrative Actions" (page 23)

The HyperStore IAM Service supports extensions to the IAM API that allow for role-based access control
(RBAC) for read-only HyperStore Admin API operations. The IAM API extensions take the form of additions to
the list of valid values that can be specified by the "Action" request parameter in a request to the HyperStore
IAM Service. The supported Actions vary by the role of the requester: the IAM Service allows a HyperStore sys-
tem administrator to execute a wider range of Actions than can a group administrator or a regular user.

Note For general information on HyperStore's support for the AWS Identity & Access Management
(IAM) API, see the IAM section of the Cloudian HyperStore AWS APIs Support Reference.

1.7.1. Comparing the Admin API to the IAM API with RBACExtensions
The table below compares the HyperStore Admin API to the HyperStore IAM API with its extensions for admin
actions.

Admin API IAM API with RBAC Extensions for Admin
Actions

Implemented by the HyperStore Admin Service

l Runs on each node in each of your service regions (but
with limited functionality in regions other than the default
region)

l Listens on ports 19443 (HTTPS) and 18081 (HTTP,
optional)

l Includes a bundled self-signed certificate for HTTPS

l Request authentication is by HTTP Basic Authentication

l Should only be exposed to internal traffic, not user traffic

l Makes no distinctions based on role of the requester --
all access is system administrator level access

Implemented by the HyperStore IAM Ser-
vice

l Runs on each node in your default
region only

l Listens on ports 16443 (HTTPS)
and 16080 (HTTP)

l Includes a bundled self-signed cer-
tificate for HTTPS

l Request authentication is by
Amazon-compliant Signature v2 or
v4

l Can be exposed to user traffic

l Makes distinctions based on the
role of the requester -- system
administrators have a greater per-
missions scope than group admin-
istrators, who have a greater
permission scope than regular
users (role-based access control)

Proprietary RESTful API Compliant with Amazon's IAM API

19

Chapter 1. Introduction

Admin API IAM API with RBAC Extensions for Admin
Actions

l GET, PUT, POST, and DELETE are all supported, and
are different operations with different consequences

l Request parameters are in lower camel case -- for
example "canonicalUserId" and "billingPeriod"

l Response bodies are JSON formatted

l Only GET and POST are supported
and it doesn't matter which you use
(what matters is the "Action" para-
meter)

l Request parameters are in upper
camel case (Pascal case) -- for
example "CanonicalUserId" and
"BillingPeriod"

l Response bodies are XML format-
ted

Wide range of administrative tasks

The Admin API supports more than 80 different methods for
retrieving information about or making changes to the system

Narrow range of administrative tasks

The IAM API extensions currently support
only 16 administrative actions and these
are all read-only (none of the supported
actions make changes to the system)

1.7.2. Administrative Actions Supported by the IAM API
The table below lists the administrative Actions supported by the HyperStore IAM Service, and how the
IAM Service restricts the use and implementation of these Actions according to the role (user account type) of
the requester.

Also as shown by the table, each administrative Action supported by the IAM Service corresponds to an exist-
ing method in the Admin API -- in the sense that the IAM Action supports the same request parameters as the
corresponding Admin API method (except the IAM version uses upper camel case for parameter names rather
than lower camel case) and returns the same response body elements as the corresponding Admin API
method (except the IAM version uses XML formatting for the response body rather than JSON). Consequently,
for details about the request parameters and response body associated with a particular administrative IAM
Action you can check the documentation of the corresponding Admin API method.

IAM Action

Permission Scope Based On
Requester's Role Corresponding Admin API

MethodSystem
Admin

Group
Admin

Regular
User

GetCloudianBill

(see Important note below table)

Get any
user's bill

Get bill of
any user in
own group

Get own
bill

GET /billing

GetCloudianGroup
Get any
group's pro-
file

Get own
group's pro-
file

Not
allowed

GET /group

GetCloudianGroupList
Get list of
groups

Not
allowed

Not
allowed

GET /group/list

GetCloudianMonitorEvents
Get event
list for a
node

Not
allowed

Not
allowed

GET /monitor/events

GetCloudianMonitorNodelist Get list of Not Not GET /monitor/nodelist

20

1.7. Role-Based Access to Admin API Operations

IAM Action

Permission Scope Based On
Requester's Role Corresponding Admin API

MethodSystem
Admin

Group
Admin

Regular
User

monitored
nodes

allowed allowed

GetCloudianMonitorHost
Get mon-
itoring stats
for a node

Not
allowed

Not
allowed

GET /monitor/host

GetCloudianMonitorRegion
Get mon-
itoring stats
for a region

Not
allowed

Not
allowed

GET /monitor

GetCloudianQosLimits

Get QoS
limits for
any group
or user

Get QoS
limits for
own group
or users in
own group

Get own
QoS limits

GET /qos/limits

GetCloudianSystemLicense
Get system
license info

Not
allowed

Not
allowed

GET /system/license

GetCloudianSystemVersion
Get current
system ver-
sion

Get current
system ver-
sion

Get current
system ver-
sion

GET /system/version

GetCloudianUsage

Get usage
info for any
group or
user

Get usage
info for own
group or
users in
own group

Get own
usage info

GET /usage

GetCloudianUser
Get any
user's pro-
file

Get profile
of any user
in own
group

Get own
profile

GET /user

GetCloudianUserCredentials
Get any
user's S3
credential

Get S3 cre-
dential of
any user in
own group

Get own S3
credential

GET /user/credentials

GetCloudianUserCredentialsList

Get any
user's S3
credentials
list

Get S3 cre-
dentials list
of any user
in own
group

Get own S3
credentials
list

GET /user/credentials/list

GetCloudianUserCredentialsListActive

Get any
user's act-
ive S3 cre-
dentials list

Get active
S3 cre-
dentials list
of any user
in own
group

Get own
active S3
credentials
list

GET /user-
/credentials/list/active

21

Chapter 1. Introduction

IAM Action

Permission Scope Based On
Requester's Role Corresponding Admin API

MethodSystem
Admin

Group
Admin

Regular
User

GetCloudianUserList
Get list of
users in
any group

Get list of
users in
own group

Not
allowed

GET /user/list

IMPORTANT ! Before the "GetCloudianBill" Action can be used to retrieve billing data for a specified
user and billing period, you must either execute the Admin API method POST /billing to generate billing
data for that user and billing period, or else use the CMC's Account Activity page (Users & Groups ->
Account Activity) to generate billing data for that user and billing period. There is currently no RBAC
version of the POST /billing call that generates user billing data.

1.7.3. Giving Administrative Action Privileges to IAM Users
Just as HyperStore users can use IAM policies to grant S3 action permissions to their IAM users, so too can
HyperStore users use IAM policies to grant HyperStore admin permissions to their IAM users. A typical use
case would be if a HyperStore system administrator wanted to create an IAM user who is allowed to perform
some of the system admin Actions but not all of them.

Note IAM users created by the default system administrative user -- the user named "admin" -- cannot
create buckets or perform other S3 operations. Such IAM users can only perform role-based admin-
istrative operations, if granted permissions by the "admin" user.

At a high level this feature works as follows:

l As is the case with S3 permissions, an IAM user by default has no admin permissions -- an IAM user
gains permissions only if she is assigned an IAM policy that specifies those permissions, and she gains
only the permissions specified in the policy.

l When an IAM policy grants an IAM user permission to an administrative action, the IAM user's per-
mission scope in respect to that action is the same as her parent HyperStore user's permission
scope (as identified in the table above). For example:

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a system administrator, the IAM user can get any HyperStore group's profile.

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a group administrator, the IAM user can (only) get that HyperStore group's profile.

o If an IAM user is granted permission to the "GetCloudianGroup" action and her parent Hyper-
Store user is a regular user, the IAM Service will reject the IAM user's attempt to get any group
profile. The IAM Service will not allow an IAM user to execute an administrative action that
her parent HyperStore user is not allowed to execute.

NoteWhen a HyperStore regular user grants his IAM users administrative action permissions
that are allowed to a regular user -- such as "GetCloudianUsage" or "GetCloudianQosLimits" --
this gives the IAM users permission to perform those actions in regard to the parent user's
account. For example an IAM user granted permission to the "GetCloudianUsage" action would

22

1.7. Role-Based Access to Admin API Operations

be able to get usage information for the parent user account; and if granted permission to
"GetCloudianQosLimits" would be able to get the QoS limits associated with the parent user
account. HyperStore does not track usage, billing, or QoS information specifically for IAM users.
This information is only tracked for the parent HyperStore user accounts.

When specified as an "Action" in an IAM policy document, all HyperStore administrative actions are pre-
fixed by "admin: " (analogous to how S3 actions are prefixed by "s3: ") -- for example "admin:GetCloud-
ianGroup" or "admin:GetCloudianMonitorEvents".

Below is an example of a simple IAM policy document for HyperStore administrative permissions:

{

"Version":"2012-10-17",

"Statement":[{

"Effect":"Allow",

"Action":"admin:GetCloudianUserList",

"Resource":"*"

}

]

}

Note You must include the "Resource" element and set it to "*". This is because Resource is a required
element in IAM policy document syntax.

For more information on using IAM polices to grant permissions to IAM users, see:

l The IAM section of the Cloudian HyperStore AWS APIs Support Reference (for the HyperStore
IAM Service's support of policy document elements)

l The online Help for the CMC's Manage IAM Policies page (for the CMC's support for creating
IAM policies)

Note The CMC provides two tools for creating IAM policies -- a Visual Editor and a JSON Editor.
The Visual Editor does not support creating a policy that contains HyperStore admin per-
missions, but the JSON Editor does.

1.7.4. Using admin_client.py to Call the IAM Service Extensions for Admin-
istrative Actions
In the current HyperStore release, the CMC's built-in IAM client does not support calling the IAM extensions for
HyperStore administrative Actions. To perform administrative Actions through the HyperStore IAM Service you
can either:

l Use a third party tool that you customize to be able to support the HyperStore admin Action strings (as
listed in the table above) and their associated request parameters (detailed in the corresponding Admin
API links provided for each action in the table).

l Use the Python tool admin_client.py that comes bundled with HyperStore version 7.1 and later, as
described below.

If you are using the HyperStore Shell

The HyperStore Shell (HSH) does not support using the admin_client.py tool.

23

Chapter 1. Introduction

Note To use the admin_client.py tool you will need to supply the tool with S3 access credentials.
These can be your own credentials or those of an IAM user to whom you have granted administrative
action permissions in an IAM policy.

HyperStore includes an interactive tool (written in Python) that makes it easy to call the administrative Actions
that the HyperStore IAM Service supports. The tool is located in the following directory on each HyperStore
node:

/opt/cloudian/tools

To launch the tool:

./admin_client.py

The first time that the tool is launched on a node, the tool automatically downloads and installs the required
Python packages if they are not already present on the node (this requires outbound internet access from the
node, in order for the tool to download the packages).

Once this completes, the tool's main menu displays:

Use option 1 to supply the tool with your S3 access credentials and to specify the target HyperStore host inform-
ation (you can connect to any HyperStore host) and the service region in which the host resides.

You can then perform admin Actions by choosing from the menus. For each request type the tool will prompt
you to provide the needed parameter values (if any). The request response will display in the tool interface, in
XML format.

It may be helpful to have the HyperStore Help open as you use the tool -- specifically the Admin API section of
the Help. If needed you can check the documentation for the corresponding Admin API call as you provide the
information required for a given request type. For example if you're using the tool to call the "GetCloudianBill"
request and the tool prompts you for the "BillingPeriod", and you're not sure of the proper format for billing
period -- you can check the Help for GET /bill to get this information. See "Administrative Actions Supported
by the IAM API" (page 20) to see which Admin API methods correspond to the administrative Actions that the
IAM Service supports.

24

1.7. Role-Based Access to Admin API Operations

Note Although the CMC's built-in IAM client does not currently support calling the admin Actions, the
CMC does support creating an IAM user, assigning that user to an IAM group, and creating an inline
policy for that group which includes admin Action permissions. The IAM user will then have those
admin Action permissions. However, the IAM user will not be able to execute those admin Actions
through the CMC -- he or she would need to use the Python tool, or a third party IAM client that's been
customized to support the IAM extensions.

25

This page left intentionally blank

Chapter 2. allowlist
The Admin API methods built around the allowlist resource are for managing a billing "allowlist" of source IP
addresses or subnets that you want to allow to have free S3 traffic with the HyperStore storage service. For
background information on the allowlist feature, including how to enable the feature, see "Creating an 'Allowl-
ist' for Free Traffic" in the Cloudian HyperStore Administrator's Guide. The allowlist feature is disabled by
default.

Note Prior to HyperStore version 7.4, this resource was called "whitelist". The GET /whitelist, POST
/whitelist, and POST whitelist/list API calls have been deprecated but will still work, if you already have
applications making those calls.

Note If you are using load balancers in front of the HyperStore S3 Service, the allowlist feature will
only work if you use PROXY Protocol between the load balancers and the S3 Service. This protocol
allows the load balancers to pass the IP addresses of originating clients to the S3 Service along with
the S3 requests. For more information about enabling PROXY Protocol support on the S3 Service side,
see s3_proxy_protocol_enabled in the common.csv section of the Cloudian HyperStore Admin-
istrator's Guide. For guidance on configuring the load balancers consult with Cloudian Sales Engin-
eering or Support.

Note that using the "X-Forwarded-For" HTTP header is not sufficient to support the allowlist feature.
You must use PROXY Protocol if you have load balancers in front of the S3 Service and want to use the
allowlist feature .

Methods associated with the allowlist resource:

l "GET /allowlist" (page 27)

l "POST /allowlist" (page 28)

l "POST /allowlist/list" (page 30)

2.1. GET /allowlist

GET /allowlist Get allowlist content

2.1.1. Syntax

GET /allowlist?allowlistId=Default-WL

There is no request payload.

Note In the current version of HyperStore, only one allowlist is supported and its ID is "Default-WL".

2.1.2. Example Using cURL

The example below retrieves the current contents of the allowlist with ID "Default-WL".

27

Chapter 2. allowlist

curl -X GET -k -u sysadmin:password \

https://localhost:19443/allowlist?allowlistId=Default-WL | python -mjson.tool

The response payload is a JSON-formatted Allowlist object, which in this example is as follows.

{

"id": "Default-WL",

"list": [

"10.20.2.10",

"10.20.2.11",

"10.20.2.12"

],

"name": "Default Allowlist",

"ratingPlanId": "Whitelist-RP"

}

Note By default the "Default-WL" allowlist that comes with your HyperStore system is empty. The allowl-
ist in the example above has had some IP addresses added to it.

2.1.3. Response Element Descriptions

For Allowlist object element descriptions see "POST /allowlist Change allowlist content (by request body
object)" (page 28).

2.1.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Allowlist does not exist

400 Missing required parameter : allowlistId

2.2. POST /allowlist

POST /allowlist Change allowlist content (by request body object)

2.2.1. Syntax

POST /allowlist

The required request payload is a JSON-formatted Allowlist object. See example below.

2.2.2. Usage Notes

For billing purposes, changes that you make to the composition of the allowlist (by adding or deleting IP
addresses or subnets) will take effect starting with the next hourly roll-up of HyperStore usage data.

28

2.2. POST /allowlist

2.2.3. Example Using cURL

The example below uploads allowlist content as specified in the request body. In this example the JSON-
formatted Allowlist object is specified in a text file named default_allowlist.txt which is then referenced as the
data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @default_allowlist.txt https://localhost:19443/allowlist

The default_allowlist.txt file content in this example is as follows.

{

"id": "Default-WL",

"list": ["10.20.2.10","10.20.2.11","10.20.2.12"],

"name": "Default Allowlist",

"ratingPlanId": "Whitelist-RP"

}

2.2.4. Request Element Descriptions

id

(Mandatory, string) Unique ID of the allowlist.

In the current HyperStore release only one allowlist is supported and its non-editable ID is "Default-WL".

Example:

"id": "Default-WL"

list

(Mandatory, list<string>) JSON array of source IP addresses and/or subnets.

To indicate an empty list, use an empty JSON array.

Example:

"list": ["10.20.2.10","10.20.2.11","10.20.2.12"]

Note IP addresses can be IPv4 or IPv6 format. For subnets, only IPv4 format is supported in the
current HyperStore release. IP addresses are validated for IPv4 or IPv6 syntax, and subnets are
validated for CIDR syntax.

name

(Mandatory, string) Display name of the allowlist. The default allowlist object has display name "Default
Allowlist". This is editable.

Example:

"name": "Default Allowlist"

ratingPlanId

(Mandatory, string) Unique ID of the rating plan assigned to the allowlist. The default allowlist object is
assigned rating plan "Whitelist-RP". This system-provided default allowlist rating plan makes all
inbound and outbound traffic free of charge. (By contrast, data storage continues to be priced according

29

Chapter 2. allowlist

to the user’s regular assigned rating plan.) You can edit the "ratingPlanId" to associate a different rating
plan with the default allowlist. You can also edit the "Whitelist-RP" rating plan, using the usual rating
plan APIs.

Example:

"ratingPlanId": "Whitelist-RP"

2.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Allowlist does not exist

400 Missing required attributes : {id, name, ratingPlanId}

400 Invalid JSON object

400 Invalid IP Address or IPv4 Subnet CIDR: <value>

2.3. POST /allowlist/list

POST /allowlist/list Change allowlist content (by query parameters)

2.3.1. Syntax

POST /allowlist/list?allowlistId=string&list=string

There is no request payload.

2.3.2. Parameter Descriptions

allowlistId

(Mandatory, string) Unique identifier of the allowlist. In the current HyperStore release, only one allowlist
is supported and its ID is "Default-WL".

list

(Mandatory, string) With a POST /allowlist/list request: A comma-separated list of IP addresses or sub-
nets. This list will overwrite the existing allowlist contents, so be sure to specify your full desired list of
addresses or subnets (not just new additions). IP addresses can be IPv4 or IPv6 format. For subnets,
only IPv4 format is supported in the current HyperStore release. IP addresses are validated for IPv4 or
IPv6 syntax, and subnets are validated for CIDR syntax.

2.3.3. Usage Notes

For billing purposes, changes that you make to the composition of the allowlist (by adding or deleting IP
addresses or subnets) will take effect starting with the next hourly roll-up of HyperStore usage data.

30

2.3. POST /allowlist/list

2.3.4. Example Using cURL

The example below replaces the existing allowlist contents with a new list of IP addresses.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/allowlist/list?allowlistId=Default-WL&list=10.20.2.10,10.20.2.11'

2.3.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Allowlist does not exist

400 Missing required attributes : {allowlistId, list}

400 Invalid IP Address or IPv4 Subnet CIDR: {value}

31

This page left intentionally blank

Chapter 3. billing
The Admin API methods built around the billing resource are for generating or retrieving a billable activity
report for a specified user or group. The report shows the user or group’s billable activity and the charges for
that activity based on the assigned rating plan.

For an overview of the HyperStore billing feature, see "Billing Feature Overview" in the Cloudian HyperStore
Administrator's Guide.

Methods associated with the billing resource:

l "GET /billing" (page 33)

l "POST /billing" (page 39)

3.1. GET /billing

GET /billing Get a bill for a user or group

3.1.1. Syntax

GET /billing?[userId=string&][groupId=string][canonicalUserId=string]&billingPeriod=string

There is no request payload.

3.1.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Optional, strings) Identifiers of the user or group for which to retrieve a bill.

l To retrieve a bill for a user who currently is part of the service, you can either use the "userId"
parameter in combination with the "groupId" parameter (for example user-
Id=martinez&groupId=operations), or use the "canonicalUserId" parameter by itself (with no
"groupId" parameter).

l To retrieve a bill for a user who has been deleted from the service, you must use the "canon-
icalUserId" parameter by itself (not the "userId" or "groupId" parameter).

Note If you don’t know the user’s system-generated canonical ID, you can obtain it by
using the GET /user/listmethod.

l To retrieve a bill for a whole user group, use the "groupId" parameter by itself (not the "userId" or
"canonicalUserId" parameter).

billingPeriod

(Mandatory, string) Specifies the year and month of bill. Format is yyyyMM— for example "202207" for
July 2022. Note that the system uses GMT time when demarcating exactly when a month begins and
ends.

33

Chapter 3. billing

3.1.3. Usage Notes

This method retrieves an existing bill for a user or group (a bill that has already been generated by the POST
/billingmethod.) You must use the POST /billingmethod for the user or group and billing period of interest
before you can use this method.

3.1.4. Example Using cURL

The example below generates a billable activity report for the user "glad" from the "eng" group, for the month of
July 2022. This is an existing billable activity report that has previously been generated by the POST /billing
method.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/billing?userId=glad&groupId=eng&billingPeriod=202207' \

| python -mjson.tool

The response payload is a JSON-formatted Bill object, which in this example is as follows.

{

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b",

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e",

"currency": "USD",

"endCal": 1659326400000,

"groupId": "eng",

"notes": null,

"regionBills": [

{

"currency": "USD",

"items": {

"SB": {

"item":"SB",

"quantity":108.00,

"rules":"1,0.14:5,0.12:0,0.10",

"subtotal":10.94

}

},

"region": "taoyuan",

"total": 10.94,

"whitelistItems": {},

"whitelistTotal": 0

}

],

"startCal": 1656648000000,

"total": 10.94,

"userId": "glad",

"whitelistTotal": 0

}

3.1.5. Response Element Descriptions

billID

(String) System-generated globally unique bill ID. Example:

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b"

34

3.1. GET /billing

canonicalUserId

(String) System-generated canonical user ID for the user. Empty if the bill is for a whole group. Example:

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e"

currency

(String) Currency string. Example:

"currency": "USD"

endCal

(String) End date/time of the billing period in UTC milliseconds. Example:

"endCal": 1659326400000

groupId

(String) ID of the group to which the user belongs (or of the group for which the bill was generated, in
the case of a whole group bill). Example:

"groupId": "eng"

notes

(String) Notes regarding the bill, if any. Example:

"notes": null

regionBills

(Map<string,RegionBill>) List of RegionBill objects, with one such object per service region. The
RegionBill object consists of the following attributes and nested objects:

currency

(String) Currency string. Example:

"currency": "USD"

items

(Map<string,BillItem>) List of BillItem objects, with one such object for each activity type that’s
being charged for, per the terms of the user’s rating plan. Supported activity types are "SB" (stor-
age bytes), "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD" (HTTP
Deletes). This list excludes activity for whitelisted IP addresses. Note that some or even most
activity types may not appear, depending on the rating plan terms. For example, it may be that
only storage bytes ("SB") are billed for, if that’s how the user’s rating plan is configured.

In the items list, each BillItem object is preceded by its activity type string, such as "SB": {BillItem
data}. In the example only storage bytes ("SB") are charged for in the rating plan that was applied
when this bill was generated.

The BillItem object consists of the following attributes:

item

(String) Usage type being billed for. Types are "SB" (storage bytes), "BI" (bytes in), "BO"
(bytes out), "HG" (HTTP GETs), "HP" (HTTP PUTs), "HD" (HTTP DELETEs). Example:

"item":"SB"

35

Chapter 3. billing

quantity

(Number) Usage quantity during billing period. Usage quantity metrics depend on the
usage type:

l For storage bytes (SB), the metric is GiB-Month (average number of GiBs of data
stored for the billing month). This is calculated by summing the month’s hourly
readings of stored bytes, converting to GiB, then dividing by the number of hours
in the month. In the example above the usage quantity during the billing period
was 108 GiB-months (that is, the user’s storage bytes volume average 108GiBs
over the course of the month)

l For data transfer bytes in (BI) or out (BO), the metric is number of bytes.

l For HTTP GETs (HG), PUTs (HP), or DELETEs (HD), the metric is number of mul-
tiples of 10,000 requests. For example, if usage type is HG and quantity is 7.50,
that means 75,000 HTTP GET requests.

Example:

"quantity":108.00

rules

(String) Specification of billing rules for this usage type (as configured in the user’s
assigned rating plan). In the example the "rules" attribute indicates that the user’s rating
plan is such that the first 1 GiB-month is charged at $0.14, the next 5 GiB-months is
charged at $0.12 per GiB-month, and all GiB-months above that are charged at $0.10 per
GiB-month.

Example:

"rules":"1,0.14:5,0.12:0,0.10"

subtotal

(Number) Total billing charge for the particular usage type specified by the "item" attribute.
This will be in units of the currency specified by the "currency" attribute of the
RegionBillobject that contains this BillItem object. It’s labeled as "subtotal" because it will
be added together with subtotals for other usage types (from otherBillItemobject instances
within theRegionBillobject, if any) to compute the "total" attribute for the encompassing
RegionBill instance. In the example the $10.94 sub-total comes from applying the billing
rules to the 108 GiB-months usage quantity ([1 X .14] + [5 X .12] + [102 X .10] = 10.94).

Example:

"subtotal":10.94

region

(String) Region name. Example:

"region": "taoyuan"

total

(Number) For the region, the total charges incurred — excluding activity originating from whitel-
isted source IP addresses. Example:

"total": 10.94

36

3.1. GET /billing

whitelistItems

(Map<string,BillItem>) List of BillItemobjects, for activity originating from whitelisted IP addresses
(if any). Types are "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD"
(HTTP Deletes). Example:

"whitelistItems": {}

whitelistTotal

(Number) For the region, the total charges incurred for activity originating from whitelisted source
IP addresses. Typically there are no charges for such activity. Example:

"whitelistTotal": 0

startCal

(String) Start date/time of the billing period in UTC milliseconds. Example:

"startCal": 1656648000000

total

(Number) The total charges incurred by the user during the billing period, excluding activity for whitel-
isted source IP addresses. Example:

"total": 10.94

userId

(String) ID of the user for whom the bill was generated. Empty if the bill is for a whole group. Example:

"userId": "glad"

whitelistTotal

(Number) The total charges incurred by the user for activity originating from whitelisted source IP
addresses. Example:

"whitelistTotal": 0

3.1.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Billing data does not exist

400 User does not exist

400 Missing required parameter : {billingPeriod}

400 Conflicting parameters: {canonicalUserId, groupId, userId}

37

Chapter 3. billing

3.1.7. RBAC Version of this Method

IMPORTANT ! Before the RBAC version of this method can be used to retrieve billing data for a spe-
cified user and billing period, you must either execute the Admin API method POST /billing to generate
billing data for that user and billing period, or else use the CMC's Account Activity page (Users &
Groups -> Account Activity) to generate billing data for that user and billing period. There is currently
no RBAC version of the POST /billing call that generates user billing data.

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianBill

l Parameters: Same as for GET /billing, except:

o userId and groupId are not supported. A user can only be specified by canonical ID, and retriev-
ing a bill for a whole group is not supported.

o All parameter names start with an upper case letter rather than lower case

l Response body: Same response data as for GET /billing except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get a bill for any user

o HyperStore group admin user can only get bills for users within her group

o HyperStore regular user can only get own bill

o IAM user can only use this method if granted admin:GetCloudianBill permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianBill" action retrieves billing data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. The system does not maintain billing data per
IAM user. For example, if a HyperStore group administrator grants admin:GetCloudianBill
permission to an IAM user, the IAM user will be able to retrieve billing information for any
HyperStore user in the group administrator's group. And if a HyperStore regular user
grants admin:GetCloudianBill permission to an IAM user, the IAM user will be able to
retrieve billing information for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://

localhost:16080/?Action=GetCloudianBill&CanonicalUserId=d47151635ba8d94efe981b24db00c07e

&BillingPeriod=201807

<request headers including authorization info>

RESPONSE

200 OK

38

3.2. POST /billing

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianBillResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<Bill>

<billID>936265a2-fbd5-47c2-82ed-d62298299a1b</billID>

etc...

...

...

</Bill>

</GetCloudianBillResponse>

3.2. POST /billing

POST /billing Create a bill for a user or group

3.2.1. Syntax

POST /billing?[userId=string&][groupId=string][canonicalUserId=string]&billingPeriod=string

There is no request payload.

3.2.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Optional, strings) Identifiers of the user or group for which to generate or retrieve a bill.

l To generate a bill for a user who currently is part of the service, you can either use the
"userId" parameter in combination with the "groupId" parameter (for example user-
Id=martinez&groupId=operations), or use the "canonicalUserId" parameter by itself (with no
"groupId" parameter).

l To generate a bill for a user who has been deleted from the service, you must use the "canon-
icalUserId" parameter by itself (not the "userId" or "groupId" parameter).

Note If you don’t know the user’s system-generated canonical ID, you can obtain it by
using the GET /user/listmethod.

l To generate a bill for a whole user group, use the "groupId" parameter by itself (not the "userId"
or "canonicalUserId" parameter). Note that if you generate a bill for a whole group, the bill will be
based on the rating plan assigned to the group as a whole, and will not take into account any dif-
ferent rating plans that administrators may have assigned to specific users within the group.

billingPeriod

(Mandatory, string) Specifies the year and month of bill. Format is yyyyMM— for example "202207" for
July 2022. The system uses GMT time when demarcating exactly when a month begins and ends. Note
that the bills are derived from hourly rollup usage data which by default is only retained in the system for

39

Chapter 3. billing

65 days. So by default you cannot specify a billing period (billing month) that started more than 65 days
ago.

3.2.3. Usage Notes

This method generates a user's monthly bill or a whole group’s monthly bill, and returns the bill in the response
body. The billing period must be a month that has already completed. You cannot generate a bill for the cur-
rent, in-progress month.

IMPORTANT ! Billing calculation is derived from hourly rollup usage data. The retention period for
hourly rollup usage data is configured by mts.properties.erb: reports.rolluphour.ttl. The default retention
period is 65 days. Once this rollup data is deleted it can no longer be used to generate users' bills.

3.2.4. Example Using cURL

The example below generates a billable activity report for the user "glad" from the "eng" group, for the month of
July 2022.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/billing?userId=glad&groupId=eng&billingPeriod=202207' \

| python -mjson.tool

The response payload is a JSON-formatted Bill object, which in this example is as follows.

{

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b",

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e",

"currency": "USD",

"endCal": 1659326400000,

"groupId": "eng",

"notes": null,

"regionBills": [

{

"currency": "USD",

"items": {

"SB": {

"item":"SB",

"quantity":108.00,

"rules":"1,0.14:5,0.12:0,0.10",

"subtotal":10.94

}

},

"region": "taoyuan",

"total": 10.94,

"whitelistItems": {},

"whitelistTotal": 0

}

],

"startCal": 1656648000000,

"total": 10.94,

"userId": "glad",

40

3.2. POST /billing

"whitelistTotal": 0

}

3.2.5. Response Element Descriptions

billID

(String) System-generated globally unique bill ID. Example:

"billID": "936265a2-fbd5-47c2-82ed-d62298299a1b"

canonicalUserId

(String) System-generated canonical user ID for the user. Empty if the bill is for a whole group. Example:

"canonicalUserId": "d47151635ba8d94efe981b24db00c07e"

currency

(String) Currency string. Example:

"currency": "USD"

endCal

(String) End date/time of the billing period in UTC milliseconds. Example:

"endCal": 1659326400000

groupId

(String) ID of the group to which the user belongs (or of the group for which the bill was generated, in
the case of a whole group bill). Example:

"groupId": "eng"

notes

(String) Notes regarding the bill, if any. Example:

"notes": null

regionBills

(Map<string,RegionBill>) List of RegionBill objects, with one such object per service region. The
RegionBill object consists of the following attributes and nested objects:

currency

(String) Currency string. Example:

"currency": "USD"

items

(Map<string,BillItem>) List of BillItem objects, with one such object for each activity type that’s
being charged for, per the terms of the user’s rating plan. Supported activity types are "SB" (stor-
age bytes), "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD" (HTTP
Deletes). This list excludes activity for whitelisted IP addresses. Note that some or even most
activity types may not appear, depending on the rating plan terms. For example, it may be that
only storage bytes ("SB") are billed for, if that’s how the user’s rating plan is configured.

41

Chapter 3. billing

In the items list, each BillItem object is preceded by its activity type string, such as "SB": {BillItem
data}. In the example only storage bytes ("SB") are charged for in the rating plan that was applied
when this bill was generated.

The BillItem object consists of the following attributes:

item

(String) Usage type being billed for. Types are "SB" (storage bytes), "BI" (bytes in), "BO"
(bytes out), "HG" (HTTP GETs), "HP" (HTTP PUTs), "HD" (HTTP DELETEs). Example:

"item":"SB"

quantity

(Number) Usage quantity during billing period. Usage quantity metrics depend on the
usage type:

l For storage bytes (SB), the metric is GiB-Month (average number of GiBs of data
stored for the billing month). This is calculated by summing the month’s hourly
readings of stored bytes, converting to GiB, then dividing by the number of hours
in the month. In the example above the usage quantity during the billing period
was 108 GiB-months (that is, the user’s storage bytes volume average 108GiBs
over the course of the month)

l For data transfer bytes in (BI) or out (BO), the metric is number of bytes.

l For HTTP GETs (HG), PUTs (HP), or DELETEs (HD), the metric is number of mul-
tiples of 10,000 requests. For example, if usage type is HG and quantity is 7.50,
that means 75,000 HTTP GET requests.

Example:

"quantity":108.00

rules

(String) Specification of billing rules for this usage type (as configured in the user’s
assigned rating plan). In the example the "rules" attribute indicates that the user’s rating
plan is such that the first 1 GiB-month is charged at $0.14, the next 5 GiB-months is
charged at $0.12 per GiB-month, and all GiB-months above that are charged at $0.10 per
GiB-month.

Example:

"rules":"1,0.14:5,0.12:0,0.10"

subtotal

(Number) Total billing charge for the particular usage type specified by the "item" attribute.
This will be in units of the currency specified by the "currency" attribute of the
RegionBillobject that contains this BillItem object. It’s labeled as "subtotal" because it will
be added together with subtotals for other usage types (from otherBillItemobject instances
within theRegionBillobject, if any) to compute the "total" attribute for the encompassing
RegionBill instance. In the example the $10.94 sub-total comes from applying the billing
rules to the 108 GiB-months usage quantity ([1 X .14] + [5 X .12] + [102 X .10] = 10.94).

Example:

"subtotal":10.94

42

3.2. POST /billing

region

(String) Region name. Example:

"region": "taoyuan"

total

(Number) For the region, the total charges incurred — excluding activity originating from whitel-
isted source IP addresses. Example:

"total": 10.94

whitelistItems

(Map<string,BillItem>) List of BillItemobjects, for activity originating from whitelisted IP addresses
(if any). Types are "BI" (bytes in), "BO" (bytes out), "HG" (HTTP Gets), "HP" (HTTP Puts), "HD"
(HTTP Deletes). Example:

"whitelistItems": {}

whitelistTotal

(Number) For the region, the total charges incurred for activity originating from whitelisted source
IP addresses. Typically there are no charges for such activity. Example:

"whitelistTotal": 0

startCal

(String) Start date/time of the billing period in UTC milliseconds. Example:

"startCal": 1656648000000

total

(Number) The total charges incurred by the user during the billing period, excluding activity for whitel-
isted source IP addresses. Example:

"total": 10.94

userId

(String) ID of the user for whom the bill was generated. Empty if the bill is for a whole group. Example:

"userId": "glad"

whitelistTotal

(Number) The total charges incurred by the user for activity originating from whitelisted source IP
addresses. Example:

"whitelistTotal": 0

3.2.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 No billing data

43

Chapter 3. billing

Status Code Description

400 Invalid billing period

400 Missing required parameter : {billingPeriod}

400 Conflicting parameters: {canonicalUserId, groupId, userId}

44

Chapter 4. bppolicy
The Admin API methods built around the bppolicy resource are for retrieving certain information about Hyper-
Store storage policies (also known as bucket protection policies).

For an overview of the HyperStore storage policy feature, see "Storage Policies Feature Overview" in the Cloud-
ian HyperStore Administrator's Guide. To create or change storage policies use the CMC's Storage
Policies page (Cluster -> Storage Policies).

Methods associated with the bppolicy resource:

l "GET /bppolicy/bucketsperpolicy" (page 45)

l "GET /bppolicy/listpolicy" (page 46)

4.1. GET /bppolicy/bucketsperpolicy

GET /bppolicy/bucketsperpolicy Get list of buckets using each storage policy

4.1.1. Syntax

GET /bppolicy/bucketsperpolicy

There is no request payload.

4.1.2. Usage Notes

If you have a storage policy in your system that was created prior to the release of HyperStore version 5.2
(when support for multiple storage policies was introduced), the GET /bppolicy/bucketsperpolicy method does
not work for listing buckets that use that storage policy. This is true even for buckets that were created after
HyperStore version 5.2, if the buckets use that legacy storage policy. In the GET
/bppolicy/bucketsperpolicyresponse, the policy ID for such a legacy storage policy will be DEFAULT_
<regionName> and the bucket list for the storage policy will be empty.

4.1.3. Example Using cURL

The example below retrieves the list of buckets using each storage policy.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/bppolicy/bucketsperpolicy | python -mjson.tool

The response payload is a JSON-formatted list of BucketsInPolicy objects, which in this example is as follows.

[

{

"buckets": [

"qa.tests",

"dev.specs"

],

"policyId": "b06c5f9213ae396de1a80ee264092b56",

"policyName": "Replication-3X"

},

45

Chapter 4. bppolicy

{

"buckets": [

"release.packages.archive",

"techpubs.manuals.archive"

],

"policyId": "af37905a8523d8d403d993c4f2e2c1a1",

"policyName": "EC-4-2"

}

]

4.1.4. Response Element Descriptions

buckets

(List<string>) List of buckets that use the storage policy. Example:

"buckets": ["qa.tests","dev.specs"]

policyId

(String) System-generated unique identifier of the storage policy. Example:

"policyId": "b06c5f9213ae396de1a80ee264092b56"

policyName

(String) Storage policy name. Example:

"policyName": "Replication-3X"

4.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

4.2. GET /bppolicy/listpolicy

GET /bppolicy/listpolicy Get list of storage policy names and IDs

4.2.1. Syntax

GET /bppolicy/listpolicy[?region=string][&groupId=string[&status=enum]

There is no request payload.

4.2.2. Parameter Descriptions

region

(Optional, string) If you use this parameter, then only policies associated with the specified service
region will be returned.

groupId

(Optional, string) If you use this parameter, then only policies that are available to the specified group

46

4.2. GET /bppolicy/listpolicy

will be returned. This includes system default storage policies (which are available to all groups) as well
as storage policies that are explicitly made available to the specified group.

status

(Optional, enum) If you use this parameter, then only policies that have the specified status will be
returned. The supported statuses are:

l pending— The policy is in the process of being created in the system. In this state the policy is
not yet available to be used.

l active— The policy is currently available to users when they create a new bucket.

l disabled— The policy is no longer available to users when they create a new bucket. However,
the policy still exists in the system and is still being applied to any buckets to which the policy
was assigned during the period when it was active.

l deleted— The policy has been marked for deletion and is no longer available to users.
However, the policy has not yet been purged from the system by the daily cron job.

l failed—During the policy creation, the policy failed to be fully set up in the system. Though a
BucketProtectionPolicy JSON object exists and can be retrieved, the policy is not actually set up
in the system and is not usable.

4.2.3. Usage Notes

Use this method if you want to retrieve the system-generated policy ID for each of your storage policies.

If you use more than one of the three optional filters -- region, groupId, and status -- then the returned list of stor-
age policy IDs will be for storage policies that match all of your specified filters. For example if you specify a
region and a groupId, then the returned list will consist only of policies that are both associated with that region
and available to that group.

4.2.4. Example Using cURL

The example below retrieves the list of all storage policies currently in the system.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/bppolicy/listpolicy | python -mjson.tool

The response payload is a JSON-formatted list of BucketProtectionPolicy objects, with one such object for each
storage policy. Among the attributes for each policy is the "policyId" and "policyName". In the example that fol-
lows there are two storage policies in the system, and the response payload is truncated so as to show only the
policy ID and policy name attributes.

[

{

...

...

"policyId": "b06c5f9213ae396de1a80ee264092b56",

"policyName": "Replication-3X",

...

...

},

{

...

...

47

Chapter 4. bppolicy

"policyId": "af37905a8523d8d403d993c4f2e2c1a1",

"policyName": "EC-4-2",

...

...

}

]

4.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

48

Chapter 5. bucketops
Methods associated with the bucketops resource:

l "GET /bucketops/id" (page 49)

l "GET /bucketops/gettags" (page 50)

l "POST /bucketops/purge" (page 52)

5.1. GET /bucketops/id

GET /bucketops/id Get a bucket's canonical ID

5.1.1. Syntax

GET /bucketops/id?bucketName=string

There is no request payload.

5.1.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the bucket.

5.1.3. Usage Notes

This operation returns a bucket's canonical ID, if one exists. A bucket will have a canonical ID (a system-gen-
erated unique identifier) if either of the following applies:

l The bucket was created in HyperStore 7.0 or later.

l The bucket has been subjected to a successful POST /bucketops/purge operation.

After a successful POST /bucketops/purge operation a bucket will have a different canonical ID than the one it
had before (if it had any) but will have the same bucket name.

5.1.4. Example Using cURL

The example below retrieves the canonical ID of a bucket named "bucket1".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/bucketops/id?bucketName=bucket1

The response payload is the bucket's canonical ID in plain text, which in this example is as follows:

40cc2eba37fd82df4ce04bce2bc35a94

5.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

49

Chapter 5. bucketops

Status Code Description

400 Missing required parameter : {bucketName}

5.2. GET /bucketops/gettags

GET /bucketops/gettags Get bucket tags for users in a group

5.2.1. Syntax

GET /bucketops/gettags?groupId=string[&limit=integer][&userId=string]

There is no request payload.

5.2.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to retrieve a list of users and their bucket tags.

limit

(Optional, integer) The maximum number of users to return (along with those users' bucket tags) per
operation.

Users are retrieved in alphanumeric order. If the number of users in the group exceeds the number spe-
cified by limit, in the response to the firstGET /bucketops/gettags operation the nextUserId attribute will
indicate the user ID of the next available user in the alphanumeric ordering (the alphanumerically first of
the users that has not yet been returned). That user ID can then be used as the userId parameter value
in a subsequentGET /bucketops/gettags operation. That operation will again return up to the number of
users specified by limit; and if there are more remaining users beyond that, the return will again use the
nextUserId attribute to indicate the next available user's ID; and so on.

Admin API client applications can use the limit and userId parameters in combination to support pagin-
ation of results.

Defaults to 10. Maximum allowed value for limit is 100.

userId

(Optional, string) The alphanumerically first user to retrieve. See the description of limit above for more
detail about how the userId and limit parameters can be used to support pagination.

In the firstGET /bucketops/gettags request for a group the client should omit the userId parameter. If
userId is omitted from the request, the operation's returned list of users starts with the alphanumerically
first user in the group.

Note The userId parameter is to be used only for pagination. You cannot use this parameter to
retrieve bucket tags for just one user of your choosing.

50

5.2. GET /bucketops/gettags

5.2.3. Usage Notes

For each user in the specified group this operation returns the bucket tags associated with the user's buckets
(after such tags have been created by the S3 API method PutBucketTagging; for more information on this
method see the S3 section of the Cloudian HyperStore AWS APIs Support Reference). Pagination of the
response is supported by use of the optional limit and userId settings. By default a maximum of 10 users is
returned per request.

5.2.4. Example Using cURL

The example below returns the bucket tags for the buckets owned by users in the group "Cloudian".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/bucketops/gettags?groupId=Cloudian \

| python -mjson.tool

The response payload is a JSON-formatted BucketTags object, which in this example is as follows.

{

"groupId":"Cloudian",

"nextUserId":null,

"userBucket":

{"kthompson":

{"bbucket":{"Project":"Project1","Manager":"jsmith"},

"cbucket":{"security":"public"}},

"gwashington":

{"dbucket":{"security":"public"}}

}

}

5.2.5. Response Element Descriptions

groupId

(String) The group for which users and bucket tags have been retrieved. Example:

"groupId":"Cloudian"

nextUserId

(String) Users are retrieved in alphanumeric order. If the number of users in the group exceeds the number
specified by the query parameter limit (which defaults to 10), in the GET /bucketops/gettags response the nex-
tUserId attribute will indicate the user ID of the next available user in the alphanumeric ordering (the alpha-
numerically first of the users that has not yet been returned). That user ID can then be used as the userId query
parameter value in a subsequentGET /bucketops/gettags operation. That operation will again return up to the
number of users specified by limit; and if there are more remaining users beyond that, the return will again use
the nextUserId attribute to indicate the next available user's ID.

If alphanumerically there are no additional users beyond those returned in the current response, the nex-
tUserId attribute value will be null.

Example:

"nextUserId":null

userBucket

(Map<String, Map<String, Map<String, String>>>) This entity contains the map of users, their owned buckets

51

Chapter 5. bucketops

that have bucket tags, and the bucket tags. The format is as follows:

{"userId": {"bucketName":{"tagName":"tagValue"},{"tagName2":"tagValue2"}...}, {"bucketName2":
{"tagName":"tagValue"},{"tagName2":"tagValue2"}...},... "userId2": {"bucketName"...} }

Example:

"userBucket":

{"kthompson":

{"bbucket":{"Project":"Project1","Manager":"jsmith"},

"cbucket":{"security":"public"}},

"gwashington":

{"dbucket":{"security":"public"}}

}

Note Only buckets that have bucket tags are listed in the response. Buckets that do not have bucket
tags are excluded from the response.

5.2.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter : {groupId}

5.3. POST /bucketops/purge

POST /bucketops/purge Delete all the objects in a bucket

5.3.1. Syntax

POST /bucketops/purge?bucketName=string[&token=string][&deleteBucket=boolean]

There is no request payload.

5.3.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the bucket.

token

(Optional, string) The OTP token (one-time password token) provided to you by Cloudian Support for the
purpose of allowing a purge of this bucket. This is applicable only if the target bucket is configured
with Object Lock and your system is licensed for Compatible Object Lock (not Certified Object
Lock). You must include this token in order to purge an Object Locked bucket. For information about
how to acquire this token from Cloudian Support see "Purging an Object Locked Bucket" (page 54)

52

5.3. POST /bucketops/purge

below.

deleteBucket

(Optional, boolean) This option is supported only if the target bucket is configured with Object Lock
and your system is licensed for Compatible Object Lock (not Certified Object Lock). If those con-
ditions are met you can use deleteBucket=true to have the system delete the bucket itself after it purges
all data from the bucket. If the bucket owner has File Services enabled, and has created an SMB or
NFS file share corresponding to this bucket, when the system deletes the bucket it will also delete the
corresponding file share.

Note If you are purging a bucket that is not Object Locked you cannot use the deleteBucket
option with the purge operation. Instead, after the data is purged from the bucket you can delete
the bucket in the normal way through the HyperStore S3 interface, if you wish. You can do this
either in the CMC (if your system is configured to allow administrators to view and manage
users' data in the CMC) or by using a third party S3 application to submit a DeleteBucket call to
the HyperStore S3 Service.

5.3.3. Usage Notes

The POST /bucketops/purge operation results in the system marking all the objects in the bucket as having
been deleted. However the actual deletion of object data from disk will not occur until the next automatic run-
ning of the object deletion batch processing job. By default this batch processing of object data deletes runs
hourly on each node. (The frequency with which the batch processing job runs is configurable by the cloud-
ian.delete.queue.poll.interval property in mts.properties.erb.)

The POST /bucketops/purge operation does not invoke the S3 API's DeleteObject or DeleteObjects calls and
does not create the Cassandra tombstone issues that can sometimes be caused by mass delete operations
that use HyperStore's S3 interface.

If the bucket is an Object Locked bucket and you use the deleteBucket option, the bucket itself is deleted along
with all its contents. Otherwise the bucket itself continues to exist after the operation. If you run an S3 ListOb-
jects call on the bucket -- or get the bucket in the CMC -- after executing the POST /bucketops/purge operation,
the ListObjects response will indicate that the bucket is empty even though the actual deletion of objects may
not have been completed by the cron job yet.

Note that:

l In a multi-region system, the POST /bucketops/purge call must be submitted to the Admin API service
in the region in which the target bucket is located. If you have a multi-region system and you're not
sure which region the bucket is located in, you have several options for determining the bucket's region:

o If your system is configured to allow administrators to view and manage users' data in the CMC,
you can view the bucket and its region location in the CMC.

o If you have the bucket owner's S3 credentials you can submit an S3 GetBucketLocation call to
the HyperStore S3 Service.

o You can use the Admin API to run these two calls in succession -- the first call to check what stor-
age policy the bucket is using and to see the policyId of that storage policy; and the second call
to get that storage policy's attributes including what region the policy is located in:

n GET /bppolicy/bucketsperpolicy (for more information see "GET
/bppolicy/bucketsperpolicy Get list of buckets using each storage policy" (page

53

Chapter 5. bucketops

45))

n GET /bppolicy?policyId=string

l If you have versioning configured on the bucket, the POST /bucketops/purge operation will purge all ver-
sions of all objects in the bucket.

l If you have auto-tiering configured on the bucket, any objects that have been tiered from the bucket to
the remote tiering destination will also be deleted (at the next running of the hourly system cron job men-
tioned above).

l Any S3 multipart upload operations in-progress for the bucket at the time that you execute the POST
/bucketops/purge operation will be aborted.

5.3.4. Purging an Object Locked Bucket

If your system is licensed for Compatible Object Lock you can purge an Object Locked bucket as described
below. You cannot purge an Object Locked bucket if your system is licensed for Certified Object Lock.For back-
ground information on the two types of Object Lock (Compatible and Certified), including how to tell which type
your system is licensed for, see "Object Lock Feature Overview" in the Cloudian HyperStore Administrator's
Guide.

IMPORTANT ! This procedure requires you to provide a token challenge to Cloudian Support, and in
response Cloudian Support will provide you an OTP token (one-time password token) that you will use
when executing the purge of the locked bucket. In your planning for purging the bucket, please take
into account that Cloudian Support will need time to review and process your case. This may take
up to several days.

To purge an Object Locked bucket:

1. Use the Admin API call GET /system/token/challenge?action=purge¶ms=bucketName:string to gen-
erate a token challenge. For more information about this API call see "GET
/system/token/challenge Get token challenge to provide to Cloudian Support" (page 163).

Here is an example of a token challenge generated by the GET /system/token/challenge API call.

A.fa868eff0219b2ecdf58d2aff6fa355584b090a2a6ff4073d28a2245bbc23f09

2. In the Cloudian Support Portal open a support case with subject "Token Request", and copy-paste the
token challenge (that you generated in Step 1) into the case. Indicate that your system is licensed for
Compatible Mode Object Lock and you want to purge an Object Locked bucket.

3. After reviewing the case and verifying your token challenge, through the support case Cloudian Sup-
port will provide you an OTP token that is specifically for the purpose of allowing a purge of the bucket
for which you generated the token challenge in Step 1.

Here is an example of an OTP token such as Support will provide you through the support case:

2021091704.A.ed3596d9d7b725a19e6e0f6df89fa9751c0c4403effe04712197c3acb34c37fb

The first segment in the three-segment token is the token expiration date-time in format YYYYMMDDHH
(2021091704 in the example above).

IMPORTANT ! Once you open the "Token Request" support case, watch for the email indicating
that Cloudian Support has updated the case and provided you the OTP token. The OTP token

54

5.3. POST /bucketops/purge

expires and becomes invalid 24 hours after Cloudian Support creates it.When you receive
the OTP token from Cloudian Support use it promptly, as described in the next step below.

4. Use the Admin API call POST /bucketops/purge?bucketName=string&token=string
[&deleteBucket=boolean] to purge the bucket. For the &token=string value use the entire three-seg-
ment token that Cloudian Support provided you. For more information about this API call see "POST
/bucketops/purge Delete all the objects in a bucket" (page 52).

Note If you do not delete the bucket by using the deleteBucket=true option, the empty bucket will
continue to exist and will still have Object Lock enabled.

Note that you can only use the OTP token for this one Object Locked bucket, and only before the token's expir-
ation date-time. If you need to purge this same Object Locked bucket again in the future, or if you need to purge
another Object Locked bucket, you will need to acquire a different token from Cloudian Support by following
the steps above.

5.3.4.1. Logging of Bucket Purge Requests

Requests to purge a locked bucket are -- like any other Admin API request -- logged to the Admin Service
request log (cloudian-admin-request-info.log). Such requests are not logged to the Object Lock / WORM audit
log (s3-worm.log).

For example, in cloudian-admin-request-info.log:

2021-09-08 15:31:42,119|[0:0:0:0:0:0:0:1]|POST|/bucketops/purge|

bucketName:objlocked,token:ONERESPONSE|917|403

Additional details regarding the purge request processing are logged in the Admin Service application log
(cloudian-admin.log). For example:

2021-09-08 15:31:42,119 INFO[qtp1530295320-2528] BucketOpsResource:Cannot purge bucket

objlocked as provided token ONERESPONSE is invalid or expired.

5.3.5. Example Using cURL

The example below purges the contents of a bucket named "bucket1". This is not an Object Locked bucket so
the token parameter is not used.

curl -X POST -k -u sysadmin:password \

https://localhost:19443/bucketops/purge?bucketName=bucket1

The response indicates that the bucket contents have been successfully purged (marked for deletion):

Bucket: bucket1 purged.

5.3.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter : {bucketName}

55

Chapter 5. bucketops

Status Code Description

400 Purge request must be sent to region in which bucket is located

400 deleteBucket is supported only for locked buckets

403 Compatible Object Lock type license is required to purge a locked bucket

403 Valid token from Cloudian Support is required to purge a locked bucket

56

Chapter 6. group
The Admin API methods built around the group resource are for managing HyperStore service user groups.
This includes support for creating, changing, and deleting user groups, and also for assigning rating plans to
groups.

Methods associated with the group resource:

l "DELETE /group" (page 57)

l "GET /group" (page 58)

l "GET /group/list" (page 60)

l "GET /group/ratingPlanId" (page 63)

l "POST /group" (page 64)

l "POST /group/ratingPlanId" (page 65)

l "PUT /group" (page 66)

6.1. DELETE /group

DELETE /group Delete a group

6.1.1. Syntax

DELETE /group?groupId=string

There is no request payload.

6.1.2. Parameter Descriptions

groupId

(Mandatory, string) Unique identifier of the group.

6.1.3. Usage Notes

Before you can delete a group you must first delete all users associated with the group, using the DELETE
/user method.

6.1.4. Example Using cURL

The example below deletes the "QA" group.

curl -X DELETE -k -u sysadmin:password https://localhost:19443/group?groupId=QA

6.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

57

Chapter 6. group

Status Code Description

400 Missing required parameters : {groupId}

400 Group does not exist

409 Cannot delete. Group is not empty.

6.2. GET /group

GET /group Get a group's profile

6.2.1. Syntax

GET /group?groupId=string

There is no request payload.

6.2.2. Parameter Descriptions

groupId

(Mandatory, string) Unique identifier of the group.

Note The System Admin group's "groupId" is "0".

6.2.3. Example Using cURL

The example below retrieves the "QA" group.

curl -X GET -k -u sysadmin:password https://localhost:19443/group?groupId=QA \

| python -mjson.tool

The response payload is a JSON-formatted GroupInfo object, which in this example is as follows.

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

}

58

6.2. GET /group

6.2.4. Response Element Descriptions

For description of the elements that comprise the GroupInfo object, see "PUT /group Create a new group"
(page 66).

6.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Group does not exist

400 Missing required parameters : {groupId}

6.2.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianGroup

l Parameters: Same as for GET /group, except all parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /group except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get any group

o HyperStore group admin user can only get his own group

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianGroup permission by policy,
and subject to the same restriction as the parent HyperStore user

Note The "GetCloudianGroup" action retrieves group profile data for Cloudian Hyper-
Store groups, not for HyperStore users' subsidiary IAM groups.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianGroup&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

59

Chapter 6. group

<GetCloudianGroupResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<GroupInfo>

<active>true</active>

etc...

...

...

</GroupInfo>

</GetCloudianGroupResponse>

6.3. GET /group/list

GET /group/list Get a list of group profiles

6.3.1. Syntax

GET /group/list[?prefix=string][&limit=integer][&offset=string]

There is no request payload.

6.3.2. Parameter Descriptions

prefix

(Optional, string) A group ID prefix to use for filtering. For example, if you specify "prefix=usa" then only
groups whose group ID starts with "usa" would be retrieved.

Defaults to empty string (meaning that no prefix-based filtering is performed).

limit

(Optional, integer) For purposes of pagination, the maximum number of groups to return in one
response. If more than this many groups meet the filtering criteria, then the actual number of groups
returned will be "limit plus 1". The last group returned — the "plus 1" — is an indicator that there are
more matching groups than could be returned in the current response (given the specified "limit" value).
That group’s ID can be used as the "offset" value in the next request. Note that if the offset group hap-
pens to be the last group in the entire set of matching groups, the subsequent query using the offset will
return no groups.

Defaults to 100.

offset

(Optional, string) The group ID with which to start the response list of groups for the current request, sor-
ted alphanumerically. The "offset" parameter can be used for purposes of pagination within a large res-
ult set that is being retrieved via multiple sequential requests. See the description of "limit" above for
more information.

If "offset" is not specified, the first group in the response list will be the alphanumerically first group from
the entire result set.

60

6.3. GET /group/list

6.3.3. Example Using cURL

The example below retrieves the profiles of all groups currently in the system.

curl -X GET -k -u sysadmin:password https://localhost:19443/group/list \

| python -mjson.tool

The response payload is a JSON-formatted list ofGroupInfo objects, which in this example is as follows.

[

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

},

{

"active": "true",

"groupId": "Support",

"groupName": "Technical Support Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

},

{

"active": "true",

"groupId": "engineering",

"groupName": "Engineering Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

61

Chapter 6. group

}

]

6.3.4. Response Element Descriptions

For description of the elements that comprise the GroupInfo object, see "PUT /group Create a new group"
(page 66).

6.3.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Limit should be greater than zero

6.3.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianGroupList

l Parameters: Same as for GET /group/list, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /group/list except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianGroupList permission by policy,
and subject to the same restriction as the parent HyperStore user

Note The "GetCloudianGroupList" action retrieves a list of Cloudian HyperStore groups,
not a list of HyperStore users' subsidiary IAM groups.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianGroupList

<request headers including authorization info>

RESPONSE

200 OK

62

6.4. GET /group/ratingPlanId

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianGroupListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<groupInfo>

<active>true</active>

etc...

...

...

</groupInfo>

<groupInfo>

etc...

...

...

</groupInfo>

</ListWrapper>

</GetCloudianGroupListResponse>

6.4. GET /group/ratingPlanId

GET /group/ratingPlanId Get a group's rating plan ID

6.4.1. Syntax

GET /group/ratingPlanId?groupId=string[®ion=string]

There is no request payload.

6.4.2. Parameter Descriptions

groupId

(Mandatory, string) Unique identifier of the group.

Note The System Admin group's "groupId" is "0".

region

(Optional, string) Region from which to retrieve rating plan IDs. Defaults to the default service region if
not specified.

6.4.3. Example Using cURL

The example below retrieves the ID of the rating plan assigned to the "QA" group.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/group/ratingPlanId?groupId=QA

The response payload is the rating plan identifier in plain text, which in this example is as follows.

63

Chapter 6. group

Default-RP

6.4.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

400 Missing Required parameters : {groupId}

400 Region {region} is not valid

6.5. POST /group

POST /group Change a group's profile

6.5.1. Syntax

POST /group

The required request payload is a JSON-formatted GroupInfo object.

6.5.2. Usage Notes

When editing the GroupInfo object before doing the POST operation you can edit any attribute except for the
"groupId" attribute. The "groupId" attribute must remain the same, so that you're modifying an existing group
rather than creating a new one. For an example GroupInfo object see PUT /group.

For LDAP authentication to work for system admin users when they log into the HyperStore Shell, along
with enabling LDAP for the System Admin group by editing the group's profile you must also perform this addi-
tional configuration step:

1. Log in to the Configuration Master node (as root or as a locally authenticated HyperStore Shell user).

2. Set the Distinguished Name for binding to your LDAP service, and the password:

hsctl config set hsh.ldap.bindDN=<bind Distinguished Name>

hsctl config set hsh.ldap.bindPassword=<bind password>

hsctl config apply hsh

6.5.3. Example Using cURL

The example below modifies the group profile that was created in the PUT /group example. Again the
GroupInfo object is specified in a text file named group_QA.txt which is then referenced as the data input to the
cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @group_QA.txt https://localhost:19443/group

There is no response payload.

64

6.6. POST /group/ratingPlanId

6.5.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Group does not exist

400 Missing required attribute : {groupId}

400 Invalid Active Status for Post Group

400 Invalid JSON Object

6.6. POST /group/ratingPlanId

POST /group/ratingPlanId Assign a rating plan to a group

6.6.1. Syntax

POST /group/ratingPlanId?groupId=string&ratingPlanId=string[®ion=string]

There is no request payload.

6.6.2. Parameter Descriptions

groupId

(Mandatory, string) Unique identifier of the group.

ratingPlanId

(Mandatory, string) Unique identifier of the rating plan to assign to the group.

region

(Optional, string) If your service deployment has multiple service regions, rating plan assignment is on a
per-region basis. With the POST /group/ratingPlanId method, use the "region" parameter to indicate the
service region in which to apply the specified rating plan. For example, if groupId-
d=Engineering&ratingPlanId=Gold®ion=East, then the Gold rating plan will be applied to the Engin-
eering group's service activity in the East region. Defaults to the default service region if not specified.

6.6.3. Example Using cURL

The example below assigns the "Gold" rating plan to the "QA" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/group/ratingPlanId?groupId=QA&ratingPlanId=Gold'

65

Chapter 6. group

6.6.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {groupId, ratingPlanId}

400 Region {region} is not valid

6.7. PUT /group

PUT /group Create a new group

6.7.1. Syntax

PUT /group

The required request payload is a JSON-formatted GroupInfo object. See example below.

6.7.2. Example Using cURL

The example below creates a new group with "QA" as its unique identifier. In this example the JSON-formatted
GroupInfo object is specified in a text file named group_QA.txt which is then referenced as the data input to the
cURL command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:password \

-d @group_QA.txt https://localhost:19443/group

The group_QA.txt file content in this example is as follows.

{

"active": "true",

"groupId": "QA",

"groupName": "Quality Assurance Group",

"ldapEnabled": false,

"ldapGroup": "",

"ldapMatchAttribute": "",

"ldapSearch": "",

"ldapSearchUserBase": "",

"ldapServerURL": "",

"ldapUserDNTemplate": "",

"s3endpointshttp": ["ALL"],

"s3endpointshttps": ["ALL"],

"s3websiteendpoints": ["ALL"]

}

66

6.7. PUT /group

Note If you set the "ldapEnabled" attribute to "false" for a group that you are creating, you do not need
to include the other "ldap*" attributes in the GroupInfo object. However they are shown above for com-
pleteness. The S3 endpoint attributes are also optional.

There is no response payload.

6.7.3. Request Element Descriptions

active

(Optional, string) Whether the group is enabled ("true") or disabled ("false") in the system. The users
associated with a disabled group will be unable to access HyperStore data storage or to log in to the
Cloudian Management Console. On a PUT of a new group, the "active" attribute defaults to "true" if not
explicitly set. If not specified in a POST update of an existing group, the group retains its existing active
or inactive status.

Example:

"active": "true"

groupId

(Mandatory, string) Group ID. Only letters, numbers, dashes, and underscores are allowed. Length must
be at least 1 character and no more than 64 characters.

Example:

"groupId": "QA"

Note The System Admin group's "groupId" is "0".

Note In the CMC interface the field "Group Name" maps to the "groupId" attribute in the Admin
API.

groupName

(Optional, string) Group name. Maximum length 64 characters. Example:

"groupName": "Quality Assurance Group"

Note In the CMC interface the field "Group Description" maps to the "groupName" attribute in
the Admin API.

ldapEnabled

(Optional, boolean) Whether LDAP authentication is enabled for members of this group, true or false.
Defaults to false. If LDAP authentication is enabled for the group, then by default when users from this
group log into the CMC, the CMC will check against an LDAP system (with details as specified by other
GroupInfo attributes, below) in order to authenticate the users. You can override this behavior on a per-
user basis -- that is, you can configure certain users within the group so that they are authenticated by
reference to a CMC-based password rather than an LDAP system. For more high-level information

67

Chapter 6. group

about HyperStore's support for LDAP-based user authentication, see "LDAP Integration" in the Cloudian
HyperStore Administrator's Guide.

Example:

"ldapEnabled": false

Note If you enable LDAP Authentication for an existing group to which users have already been
added via the CMC's Add User function, those existing users will continue to be authenticated
by reference to their CMC-based passwords -- not by reference to an LDAP server.

ldapGroup

(Optional, string) The group's name from the LDAP system. This would typically be the group's "ou"
(Organization Unit) value in the LDAP system, but could also be for example the "l" (Location) value or
"memberOf" value -- depending on which LDAP attribute is to be used to identify users' group mem-
bership when the CMC authenticates them against the LDAP system.

If you use the variable {groupId} in any of the other LDAP authentication configuration attributes, when
implementing LDAP authentication HyperStore will automatically replace the variable with the
ldapGroup value.

"ldapGroup": "Quality Assurance (U.S.)"

ldapMatchAttribute

(Optional, string) For background information about the purpose of this attribute, see the description of
the ldapSearch attribute below.

Use the ldapMatchAttribute setting to specify an LDAP attribute value against which LDAP-enabled
users in this group must match in order to be authorized to log into the CMC. Use this format: <attrib-
ute>=<value>.

Example:

"ldapMatchAttribute": "l=California"

Example:

"ldapMatchAttribute": "memberOf=Sales"

ldapSearch

(Optional, string) If this is an LDAP-enabled group, and if you want to establish a LDAP-based user
authorization filter to complement the user authentication template that you set with the ldapUser-
DNTemplate attribute, then use the ldapSearch, ldapSearchUserBase, and ldapMatchAttribute attrib-
utes to configure the filter. If you do so, then LDAP-enabled users from this group when logging in to the
CMC will need to meet the requirements of the authentication template and also the requirements of the
filter.

Use the ldapSearch attribute to specify the user identifier type that you used in the ldapUser-
DNTemplate, in format "(<LDAP_user_identifier_attribute>={userId})". This is used to retrieve a user’s
LDAP record in order to apply the filtering.

Example:

"ldapSearch": "(uid={userId})"

Example:

68

6.7. PUT /group

"ldapSearch": "(userPrincipalName={userId})"

ldapSearchUserBase

(Optional, string) For background information about the purpose of this attribute, see the description of
the ldapSearch attribute above.

Use the ldapSearchUserBase attribute to specify the LDAP search base from which the CMC should
start when retrieving the user's LDAP record in order to apply filtering. .

Example:

"ldapSearchUserBase": "dc=my-company,dc=com"

Example:

"ldapSearchUserBase": "uid={userId},ou=engineering,dc=my-company,dc=com"

ldapServerURL

(Optional, string) If this is an LDAP-enabled group, use this attribute to specify the URL that the CMC
should use to access the LDAP Server when authenticating users in this group.

Note that if you use ldaps (LDAP secured by SSL/TLS), the LDAP server must use a CA-verified cer-
tificate not a self-signed certificate. HyperStore does not support connecting to an LDAP server that’s
using a self-signed SSL certificate.

Example:

"ldapServerURL": "ldap://my.ldap.server:389"

Example:

"ldapServerURL": "ldap://my.ldap.server:389/o=MyCompany"

ldapUserDNTemplate

(Optional, string) If this is an LDAP-enabled group, use this attribute to specify how users within this
group will be authenticated against the LDAP system when they log into the CMC. It is a template that
defines how user names supplied during CMC login will be mapped to user-identifying information in
the LDAP system. Two typical ways of configuring this template are:

l Distinguished Name. With this approach the template specification would include the LDAP
attribute "uid" set to equal the CMC token "{userId}" (exactly as shown below), the LDAP attribute
"ou" set to equal the group's organizational unit value from the LDAP system, and the domain
components from LDAP. For example:

"ldapUserDNTemplate": "uid={userId},ou=engineering,dc=my-company,dc=com"

With the DN template above, LDAP-enabled users from this group will log in with their LDAP uid
value as their CMC user ID. During login the CMC will also verify that the ou value in the user's
LDAP record matches against the ou value from the template.

Note If you are configuring LDAP authentication for the System Admin group, use the
Distinguished Name approach for the user DN template.

l userPrincipalName. With this approach the template would simply map the LDAP attribute "user-
PrincipalName" to the CMC variable "{userId}", like this:

"ldapUserDNTemplate": "userPrincipalName={userId}"

69

Chapter 6. group

With the approach above LDAP-enabled users from this group will log in with their LDAP user-
PrincipalName value (such as <user>@<domain>) as their CMC user ID. Optionally, to imple-
ment additional LDAP-based authorization filters such as the users' group or location, you can
use the ldapSearch, ldapSearchUserBase, and ldapMatchAttribute attributes (all described
earlier in this topic) when you create the group in HyperStore.

s3endpointshttp

(Optional, list<string>) The S3 HTTP service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 HTTP endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 HTTP end-
points in the CMC's Security Credentials page)

If the s3endpointshttp attribute is omitted from the GroupInfo object in a PUT /group request, the attribute
defaults to ["ALL"].

Example:

"s3endpointshttp": ["ALL"]

Note This attribute and the other S3 endpoint attributes do not impact a group's users' author-
ization to access S3 endpoints. They only impact what S3 endpoint information is displayed to
users in the CMC's Security Credentials page.

s3endpointshttps

(Optional, list<string>) The S3 HTTPS service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 HTTPS endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 HTTPS end-
points in the CMC's Security Credentials page)

If the s3endpointshttps attribute is omitted from the GroupInfo object in a PUT /group request, the attrib-
ute defaults to ["ALL"].

Example:

"s3endpointshttps": ["ALL"]

s3websiteendpoints

(Optional, list<string>) The S3 website service endpoint(s) that will be displayed to this group's users
when those users log into the CMC and go to the Security Credentials page. The value can be:

l A single endpoint

l Multiple endpoints in a comma-separated list

70

6.7. PUT /group

l The string "ALL" (to indicate that this group's users will be able to see all of the system's con-
figured S3 website endpoints in the CMC's Security Credentials page)

l The string "NONE" (to indicate that this group's users will not be able to see any S3 website end-
points in the CMC's Security Credentials page)

If the s3websiteendpoints attribute is omitted from the GroupInfo object in a PUT /group request, the
attribute defaults to ["ALL"].

Example:

"s3websiteendpoints": ["ALL"]

6.7.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required attribute : {groupId}

400 Invalid JSON Object

400 Invalid Group ID

400 Invalid Active Status for Add Group

409 Unique constraint violation : {groupId}

71

This page left intentionally blank

Chapter 7. monitor
The Admin API methods built around the monitor resource are for monitoring the health and performance of
your HyperStore system. There are methods for retrieving system and node statistics and for implementing sys-
tem alert functionality.

Methods associated with the monitor resource:

l "DELETE /monitor/notificationrule" (page 73)

l "GET /monitor/events" (page 74)

l "GET /monitor/nodelist" (page 78)

l "GET /monitor/host" (page 79)

l "GET /monitor" (page 91)

l "GET /monitor/history" (page 98)

l "GET /monitor/notificationrules" (page 100)

l "POST /monitor/acknowledgeevents" (page 101)

l "POST /monitor/notificationruleenable" (page 103)

l "POST /monitor/notificationrule" (page 104)

l "PUT /monitor/notificationrule" (page 105)

7.1. DELETE /monitor/notificationrule

DELETE /monitor/notificationrule Delete a notification rule

7.1.1. Syntax

DELETE /monitor/notificationrule?ruleId=string[®ion=string]

There is no request payload.

7.1.2. Parameter Descriptions

ruleId

(Mandatory, string) The system-generated unique ID for the notification rule. For the default notification
rules that come packaged with the HyperStore system this will be a simple integer like "1", "2", or "14".
For rules that you create yourself the system will generate a ruleId in the form of a UUID string like "8e4c-
c533-360a-4dd5-bfe4-6b5f5b6c40da".

If you do not know the ruleId, you can retrieve it by using the GET /monitor/notificationrules method. That
method returns a list of notification rules which includes each rule’s ruleId.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

73

Chapter 7. monitor

7.1.3. Example Using cURL

The example below deletes a notification rule.

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/monitor/notificationrule?ruleId=8ef63b63-4961-4e17-88c7-d53c966557db

7.1.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {ruleId}

400 Notification rule does not exist : {ruleId}

7.2. GET /monitor/events

GET /monitor/events Get the event list for a node

7.2.1. Syntax

GET /monitor/events?nodeId=string[&showAck=bool[&limit=integer][®ion=string]

There is no request payload.

7.2.2. Parameter Descriptions

nodeId

(Mandatory, string) The hostname of the target node.

showAck

(Optional, boolean) Whether to return acknowledged events as well as unacknowledged events, true or
false.

If not specified in the request, defaults to false (only unacknowledged events are returned).

limit

(Optional, integer) The maximum number of events to return in the response.

If not specified in the request, the default limit is 100 events.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

74

7.2. GET /monitor/events

7.2.3. Usage Notes

Alert lists in the CMC are retrieved by this API method, but the CMC interface uses the term "alerts" rather than
"events".

7.2.4. Example Using cURL

The example below retrieves the list of unacknowledged events for the node that has hostname "store1".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/monitor/events?nodeId=store1 | python -mjson.tool

The response payload is a JSON-formatted list ofMonitoringEvent objects, which in this example is as follows.

[

{

"ack": false,

"condition": "<",

"conditionVal": "0.15",

"count": 1,

"eventType": "13|/dev/mapper/vg0-root",

"nodeId": "store1",

"severityLevel": 2,

"statId": "diskInfo",

"timestamp": "1502797442785",

"value": "/dev/mapper/vg0-root: 0.11198006761549427"

},

{

"ack": false,

"condition": "",

"conditionVal": "",

"count": 1,

"eventType": "14|",

"nodeId": "store1",

"severityLevel": 0,

"statId": "repairCompletionStatus",

"timestamp": "1502794743351",

"value": "REPAIR cmdno#: 610 status: COMPLETED"

}

]

7.2.5. Response Element Descriptions

ack

(Boolean) Whether the event has been acknowledged, true or false. This will be false unless you expli-
citly retrieved acknowledged events when you executed the GET /monitor/events method. Example:

"ack": false

condition

(String) From the notification rule that triggered this event, the condition comparison type in the rule
definition. This will be "=", "<", or ">". Example:

"condition": "<"

75

Chapter 7. monitor

conditionVal

(String) From the notification rule that triggered this event, the condition value against which to compare.
For example, this may be a numerical threshold value, or a service status such as "SVC_DOWN", or a
log message level such as "LOG_ERR". Example:

"conditionVal": "0.15"

count

(Integer) Number of times that the event has occurred without being acknowledged. Example:

"count": 1

eventType

(String) From the notification rule that triggered this event, the integer <ruleId> value . (Or, for log events,
a concatenation of "<ruleId>|<logCategory>". The logCategory is derived from the line of code that gen-
erates the specific log message.) Example:

"eventType": "13|/dev/mapper/vg0-root"

nodeId

(String) Hostname of the node on which the event occurred. Example:

"nodeId": "store1"

severityLevel

(Integer) Severity level of the event, as configured in the notification rule for the event. This is an integer
with meaning as follows:

l 0 = Low

l 1 = Medium

l 2 = High

l 3 = Critical

Example:

"severityLevel": 2

statId

(String) From the notification rule that triggered this event, the statId. See for a list of supported statIds.

Example:

"statId": "diskInfo"

Note The "svcS3" statId encompasses events pertaining to auto-tiering and cross-region rep-
lication, as well as events pertaining to providing S3 service to clients.

timestamp

(String) Timestamp of latest event occurrence in UTC milliseconds. Example:

"timestamp": "1502797442785"

value

76

7.2. GET /monitor/events

(String) On the node, the statistic value that triggered this event. For example, if the event was triggered
by a statistic rising to a threshold-exceeding value, this attribute would indicate that value. In the case of
a log event, the "value" is the log message.

Example:

"value": "/dev/mapper/vg0-root: 0.11198006761549427"

7.2.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {nodeId}

400 Invalid region : {region}

400 Invalid limit

7.2.7. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianMonitorEvents

l Parameters: Same as for GET /monitor/events, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /monitor/events except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorEvents permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorEvents&NodeId=store1

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorEventsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

77

Chapter 7. monitor

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<monitoringEvent>

<ack>false</ack>

etc...

...

...

</monitoringEvent>

<monitoringEvent>

etc...

...

...

</monitoringEvent>

</ListWrapper>

</GetCloudianMonitorEventsResponse>

7.3. GET /monitor/nodelist

GET /monitor/nodelist Get the list of monitored nodes

7.3.1. Syntax

GET /monitor/nodelist[?region=string]

There is no request payload.

7.3.2. Parameter Descriptions

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

7.3.3. Example Using cURL

The example below retrieves the list of monitored nodes in the default service region.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/monitor/nodelist | python -mjson.tool

The response payload is a JSON-formatted list of hostnames, which in this example is as follows.

[

"store1",

"store2",

"store3"

]

7.3.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

78

7.4. GET /monitor/host

7.3.5. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianMonitorNodeList

l Parameters: Same as for GET /monitor/nodelist, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /monitor/nodelist except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorNodeList permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorNodeList

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorNodeListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<String>

hyperstore1

</String>

</GetCloudianMonitorNodeListResponse>

7.4. GET /monitor/host

GET /monitor/host Get current monitoring statistics for a node

7.4.1. Syntax

GET /monitor/host?nodeId=string[®ion=string]

There is no request payload.

79

Chapter 7. monitor

7.4.2. Parameter Descriptions

nodeId

(Mandatory, string) The hostname of the target node.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

7.4.3. Example Using cURL

The example below retrieves current monitoring statistics for the node that has hostname "store1".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/monitor/host?nodeId=store1 | python -mjson.tool

The response payload is a JSON-formatted MonitorNodeInfo object, which in this example is as follows.

{

"adminHeapMax": {

"timestamp": "1502799543355",

"value": "409075712"

},

"adminHeapUsed": {

"timestamp": "1502799543355",

"value": "109849080"

},

"cassCMSGCCount": {

"timestamp": "1502799543355",

"value": "3"

},

"cassCMSGCTime": {

"timestamp": "1502799543355",

"value": "151"

},

"cassCopyGCCount": null,

"cassCopyGCTime": null,

"cassHeapMax": {

"timestamp": "1502799543355",

"value": "2086666240"

},

"cassHeapUsed": {

"timestamp": "1502799543355",

"value": "1233215776"

},

"cassParNewGCCount": {

"timestamp": "1502799543355",

"value": "4882"

},

"cassParNewGCTime": {

"timestamp": "1502799543355",

"value": "87598"

},

"cpu": {

80

7.4. GET /monitor/host

"timestamp": "1502799663530",

"value": "0.06"

},

"diskAvailKb": {

"timestamp": "1502799543355",

"value": "21912316"

},

"diskIORead": {

"timestamp": "1502799663530",

"value": "0"

},

"diskIOWrite": {

"timestamp": "1502799663530",

"value": "93811"

},

"diskTotalKb": {

"timestamp": "1502799543355",

"value": "36056096"

},

"diskUsedKb": {

"timestamp": "1502799543355",

"value": "13330724"

},

"disksInfo": {

"disks": [

{

"deviceName": "/dev/mapper/vg0-root",

"diskAvailKb": "1776316",

"diskIORead": "724419584",

"diskIOWrite": "471087837184",

"diskTotalKb": "15874468",

"diskUsedKb": "13285096",

"mountPoint": "/",

"status": "OK",

"storageUse": [

"CASSANDRA",

"REDIS",

"LOG"

]

},

{

"deviceName": "/dev/vdb1",

"diskAvailKb": "20135940",

"diskIORead": "3163136",

"diskIOWrite": "50221056",

"diskTotalKb": "20181628",

"diskUsedKb": "45688",

"mountPoint": "/cloudian1",

"status": "OK",

"storageUse": [

"HS"

]

}

81

Chapter 7. monitor

],

"timestamp": "1502799663530"

},

"hyperStoreHeapMax": {

"timestamp": "1502799543355",

"value": "1635909632"

},

"hyperStoreHeapUsed": {

"timestamp": "1502799543355",

"value": "139187600"

},

"ioRx": {

"timestamp": "1502799663530",

"value": "17216"

},

"ioTx": {

"timestamp": "1502799663530",

"value": "28179"

},

"s3GetLatency": null,

"s3GetTPS": null,

"s3GetThruput": {

"timestamp": "1502799543355",

"value": "0"

},

"s3HeapMax": {

"timestamp": "1502799543355",

"value": "818020352"

},

"s3HeapUsed": {

"timestamp": "1502799543355",

"value": "164786136"

},

"s3PutLatency": {

"timestamp": "1502799543355",

"value": "18.4"

},

"s3PutTPS": {

"timestamp": "1502799543355",

"value": "0.0"

},

"s3PutThruput": {

"timestamp": "1502799543355",

"value": "0"

},

"status": {

"ipaddr": "",

"status": [

"LOG_WARN"

],

"timestamp": "1502799663530",

"value": "[LOG_WARN]"

},

82

7.4. GET /monitor/host

"svcAdmin": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcCassandra": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcHyperstore": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisCred": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisMon": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcRedisQos": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

"timestamp": "1502799663530",

"value": "[OK]"

},

"svcS3": {

"ipaddr": "10.10.2.91",

"status": [

"OK"

],

83

Chapter 7. monitor

"timestamp": "1502799663530",

"value": "[OK]"

}

}

7.4.4. Response Element Descriptions

Note Within the MonitorNodeInfo object:
* All statistics for which the data type (in the descriptions below) is MonitorStat are formatted as
"<statName>": {"timestamp": "<UTCMilliseconds>","value": "<statValue>"}.
* All statistics for which the data type is ServiceStatus are formatted as {"ipaddr":
"<nodeIPAdress>","status": [<list of one or more of "OK","SVC_DOWN", "LOG_WARN", or "LOG_
ERR">],"timestamp": "<UTCMilliseconds>","value": "<statusValueFormattedAsString>"}

adminHeapMax

(MonitorStat) The maximum JVM heap size allocated to the Admin Service, in bytes. Example:

"adminHeapMax": {"timestamp": "1502799543355","value": "409075712"}

adminHeapUsed

(MonitorStat) The Admin Service’s current JVM heap memory usage on the node, in bytes. This is meas-
ured each five minutes. Example:

"adminHeapUsed": {"timestamp": "1502799543355","value": "109849080"}

cassCMSGCCount

(MonitorStat) The number of concurrent mark-sweep (CMS) garbage collections executed since the last
start-up of the Cassandra service on this node. This collection type targets old-generation objects.
Example:

"cassCMSGCCount": {"timestamp": "1502799543355","value": "3"}

cassCMSGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing CMC garbage collections since
the last start-up of the Cassandra service on this node. Example:

"cassCMSGCTime": {"timestamp": "1502799543355","value": "151"}

cassCopyGCCount

(MonitorStat) The number of Copy garbage collections executed since the last start-up of the Cassandra
service on this node. Example:

"cassCopyGCCount": null

cassCopyGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing Copy garbage collections since
the last start-up of the Cassandra service on this node. Example:

"cassCopyGCTime": null

cassHeapMax

(MonitorStat) The maximum JVM heap size allocated to the Cassandra Service, in bytes. Example:

84

7.4. GET /monitor/host

"cassHeapMax": {"timestamp": "1502799543355","value": "2086666240"}

cassHeapUsed

(MonitorStat) The Cassandra Service’s current JVM heap memory usage on the node, in bytes. This is
measured each five minutes. Example:

"cassHeapUsed": {"timestamp": "1502799543355","value": "1233215776"}

cassParNewGCCount

(MonitorStat) The number of parallel new-generation (ParNew) garbage collections executed since the
last start-up of the Cassandra service on this node. Example:

"cassParNewGCCount": {"timestamp": "1502799543355","value": "4882"}

cassParNewGCTime

(MonitorStat) The aggregate time (in milliseconds) spent on executing ParNew garbage collections
since the last start-up of the Cassandra service on this node. Example:

"cassParNewGCTime": {"timestamp": "1502799543355","value": "87598"}

cpu

(MonitorStat) Current CPU utilization percentage on the node. This is measured once per every five
minutes. Example:

"cpu": {"timestamp": "1502799663530","value": "0.06"}

diskAvailKb

(MonitorStat) On the node, the total mounted disk space that's still available for S3 object storage (Hyper-
Store data directories) or Cassandra metadata storage (Cassandra data directory). Reported as a num-
ber of kibibytes.

The following are deducted from the total amount of unused disk space to arrive at the "available" disk
space amount that is reported by the diskAvailKb statistic:

l Each disk’s "reserved-blocks-percentage" (the portion of the disk that’s reserved for privileged
processes)

l Each HyperStore data disk's "stop-write" buffer (10% of capacity by default). For more inform-
ation on the stop-write feature see the "Automated Disk Management" section in the Cloudian
HyperStore Administrator's Guide.

Example:

"diskAvailKb": {"timestamp": "1502799543355","value": "21912316"}

Note Because the reserved-blocks-percentage and the stop-write buffer percentage are not
counted as available space, the diskUsedKb and diskAvailKb will add up to less than the
diskTotalKb.

diskIORead

(MonitorStat) Across all the node’s disks that are being used for S3 object storage or Cassandra
metadata storage, the average disk read throughput in bytes per second. This stat is recalculated each
minute, based on the most recent minute of activity. Example:

"diskIORead": {"timestamp": "1502799663530","value": "0"}

85

Chapter 7. monitor

diskIOWrite

(MonitorStat) Across all the node’s disks that are being used for S3 object storage or Cassandra
metadata storage, the average disk write throughput in bytes per second. This stat is recalculated each
minute, based on the most recent minute of activity. Example:

"diskIOWrite": {"timestamp": "1502799663530","value": "93811"}

diskTotalKb

(MonitorStat) On the node, the total size of the disks mounted for S3 object storage (HyperStore data dir-
ectories) or Cassandra metadata storage (Cassandra data directory). Reported as a number of kib-
ibytes. Example:

"diskTotalKb": {"timestamp": "1502799543355","value": "36056096"}

diskUsedKb

(MonitorStat) On the node, the total disk space that's been consumed for S3 object storage (HyperStore
data directories) or Cassandra metadata storage (Cassandra data directory) Reported as a number of
kibibytes. Example:

"diskUsedKb": {"timestamp": "1502799543355","value": "13330724"}

disksInfo

(DiskMonitorStat) Current information about each disk on the node. Formatted as {"disks":
List<DiskInfo>,"timestamp": "<UTCMilliseconds>"}. There is one nested DiskInfo object for each disk on
the node. Each DiskInfo object consists of the following attributes:

deviceName

(String) Disk drive device name. Example:

"deviceName": "/dev/mapper/vg0-root"

diskAvailKb

(String) Total remaining free space on the disk in number of KiBs. In calculating the available
space, a disk’s "reserved-blocks-percentage" (the portion of the disk space that’s reserved for
privileged processes) is considered to be unavailable. By default in Linux systems the con-
figurable "reserved-blocks-percentage" for a file system is 5% of disk capacity. If this is a Hyper-
Store data disk, then the "stop-write" buffer (10% of disk capacity by default) is also considered to
be unavailable.

Example:

"diskAvailKb": "1776316"

diskIORead

(String) The average disk read throughput for this disk, in bytes per second. This stat is recal-
culated each minute, based on the most recent minute of data. Example:

"diskIORead": "724419584"

diskIOWrite

(String) The average disk write throughput for this disk, in bytes per second. This stat is recal-
culated each minute, based on the most recent minute of data. Example:

"diskIOWrite": "471087837184"

86

7.4. GET /monitor/host

diskTotalKb

(String) Total capacity of the disk in number of KiBs. Example:

"diskTotalKb": "15874468"

diskUsedKb

(String) Amount of used space on the disk in number of KBs. Example:

"diskUsedKb": "13285096"

mountPoint

(String) File system mount point for the disk. Example:

"mountPoint": "/

status

(EDiskStatus) Disk status string. One of "OK", "ERROR", or "DISABLED". For description of these
disk statuses, while on the CMC's Node Status page click Help.

Example:

"status": "OK"

storageUse

(EStorageType) List of storage type strings, indicating what type of data is being stored on the
disk. One or more of:

l "CASSANDRA" — System metadata and S3 object metadata in Cassandra.

l "REDIS" — System metadata in Redis.

l "LOG" — Application logs

l "HS" — Replicated S3 object data.

l "EC" — Erasure coded S3 object data.

l "NOTAVAIL" — Storage usage information cannot be retrieved for this disk.

Example:

"storageUse": ["CASSANDRA","REDIS","LOG"]

hyperStoreHeapMax

(MonitorStat) The maximum JVM heap size allocated to the HyperStore Service, in bytes. Example:

"hyperStoreHeapMax": {"timestamp": "1502799543355","value": "1635909632"}

hyperStoreHeapUsed

(MonitorStat) The HyperStore Service’s current JVM heap memory usage on the node, in bytes. This is
measured each five minutes. Example:

"hyperStoreHeapUsed": {"timestamp": "1502799543355","value": "139187600"}

ioRx

(MonitorStat) The aggregate network bytes per second received by the node, for all types of network
traffic including but not limited to S3 request traffic. For nodes with multiple network interfaces, this stat is
an aggregation across the multiple interfaces. This stat is recalculated each minute, based on the most

87

Chapter 7. monitor

recent minute of activity.

Example:

"ioRx": {"timestamp": "1502799663530","value": "17216"}

ioTx

(MonitorStat) The aggregate network bytes per second transmitted by the node, for all types of network
traffic including but not limited to S3 request traffic. For nodes with multiple network interfaces, this stat is
an aggregation across the multiple interfaces. This stat is recalculated each minute, based on the most
recent minute of activity. Example:

"ioTx": {"timestamp": "1502799663530","value": "28179"}

s3GetLatency

(MonitorStat) On the node, the 95th percentile request latency value for S3 GET transactions, in mil-
liseconds. New statistic values are calculated each five minutes, based on the most recent approx-
imately 1000 GET transactions. The s3GetLatency value indicates that of the last 1000 GET
transactions, 95% completed in that many milliseconds or less.

Example:

"s3GetLatency": null

Note HEAD transactions are counted toward this stat also.

s3GetTPS

(MonitorStat) On the node, the number of S3 GET transactions processed per second. This stat is recal-
culated each five minutes, based on the most recent five minutes of activity. HEAD transactions are
counted toward this stat also. Example:

"s3GetTPS": null

s3GetThruput

(MonitorStat) On the node, the data throughput for S3 GET transactions, expressed as bytes per second.
This stat is recalculated each five minutes, based on the most recent five minutes of transaction data.
HEAD transactions are counted toward this stat also. Example:

"s3GetThruput": {"timestamp": "1502799543355","value": "0"}

s3HeapMax

(MonitorStat) The maximum JVM heap size allocated to the S3 Service, in bytes. Example:

"s3HeapMax": {"timestamp": "1502799543355","value": "818020352"}

s3HeapUsed

(MonitorStat) The S3 Service’s current JVM heap memory usage on the node, in bytes. This is meas-
ured each five minutes. Example:

"s3HeapUsed": {"timestamp": "1502799543355","value": "164786136"}

s3PutLatency

(MonitorStat) On the node, the 95th percentile request latency value for S3 PUT transactions, in

88

7.4. GET /monitor/host

milliseconds. New statistic values are calculated each five minutes, based on the most recent approx-
imately 1000 PUT transactions. The s3PutLatency value indicates that of the last 1000 PUT trans-
actions, 95% completed in that many milliseconds or less.

Example:

"s3PutLatency": {"timestamp": "1502799543355","value": "18.4"}

Note POST transactions are counted toward this stat also.

s3PutTPS

(MonitorStat) On the node, the number of S3 PUT transactions processed per second. This stat is recal-
culated each five minutes, based on the most recent five minutes of transaction data. POST transactions
are counted toward this stat also. Example:

"s3PutTPS": {"timestamp": "1502799543355","value": "0.0"}

s3PutThruput

(MonitorStat) On the node, the data throughput for S3 PUT transactions, expressed as bytes per second.
This stat is recalculated each five minutes, based on the most recent five minutes of transaction data.
POST transactions are counted toward this stat also. Example:

"s3PutThruput": {"timestamp": "1502799543355","value": "0"}

status

(ServiceStatus) Overall status of the node.

Formatted as {"ipaddr": "<empty>", "status": [<list of one or more of "OK","SVC_DOWN","LOG_WARN", or
"LOG_ERR">], "timestamp": "<UTCMilliseconds>","value": "<statusValueFormattedAsString>",}.

The "ipaddr" value will be empty or null here; an IP address is specified only in the service-specific
status attributes (such as "svcCassandra") described below.

Possible values within the "status" list are:

l "OK" — All HyperStore services are up and running on the node, and the node has no unac-
knowledged events.

l "SVC_DOWN"— One or more HyperStore services (Admin, Cassandra, HyperStore, Redis QoS,
Redis Credentials, Redis Monitor, or S3) is down on the node

l "LOG_WARN"— There are unacknowledged warnings in an application log on the node (such
as the S3 Service application log or the Cassandra application log).

l "LOG_ERR" — There are unacknowledged errors in an application service log.

The "value" attribute will be identical to the "status" attribute, except formatted as a single string rather
than a list of strings.

Example:

"status": {"ipaddr": "","status": ["SVC_DOWN","LOG_WARN"],"timestamp":

"1502799663530","value": "[SVC_DOWN, LOG_WARN]"}

svcAdmin

(ServiceStatus) Admin service status on the node.

89

Chapter 7. monitor

Formatted as {"ipaddr": "<nodeIPAdress>","status": [<list of one or more of "OK","SVC_DOWN", "LOG_
WARN", or "LOG_ERR">],"timestamp": "<UTCMilliseconds>","value": "<statusValueFor-
mattedAsString>"}.

Example:

"svcAdmin": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

The other service status attributes that follow below (svcCassandra and so on) are formatted in the
same way.

svcCassandra

(ServiceStatus) Cassandra service status on the node. Example:

"svcCassandra": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

svcHyperstore

(ServiceStatus) HyperStore service status on the node. Example:

"svcHyperstore": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

svcRedisCred

(ServiceStatus) Redis Credentials service status on the node. Example:

"svcRedisCred": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

svcRedisMon

(ServiceStatus) Redis Monitor service status on the node. Example:

"svcRedisMon": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

svcRedisQos

(ServiceStatus) Redis QoS service status on the node. Example:

"svcRedisQos": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

svcS3

(ServiceStatus) S3 service status on the node. Example:

"svcS3": {"ipaddr": "10.10.2.91","status": ["OK"],"timestamp":

"1502799663530","value": "[OK]"}

7.4.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {nodeId}

90

7.5. GET /monitor

7.4.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianMonitorHost

l Parameters: Same as for GET /monitor/host, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /monitor/host except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorHost permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorHost

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorHostResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<MonitorNodeInfo>

<adminHeapMax>

<timestamp>1534534923619</timestamp>

<value>1538260992</value>

</adminHeapMax>

etc...

...

...

</MonitorNodeInfo>

</GetCloudianMonitorHostResponse>

7.5. GET /monitor

GET /monitor Get current monitoring statistics for a service region

91

Chapter 7. monitor

7.5.1. Syntax

GET /monitor?[region=string]

There is no request payload.

7.5.2. Parameter Descriptions

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

7.5.3. Example Using cURL

The example below retrieves current monitoring statistics for the default service region.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/monitor | python -mjson.tool

The response payload is a JSON-formatted MonitorSystemInfo object, which in this example is as follows.

{

"diskAvailKb": {

"timestamp": "1502799843254",

"value": "61855592"

},

"diskTotalKb": {

"timestamp": "1502799843254",

"value": "88115680"

},

"diskUsedKb": {

"timestamp": "1502799843254",

"value": "23814368"

},

"nodeStatuses": [

{

"hostname": "store1",

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

},

{

"hostname": "store2",

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

},

{

"hostname": "store3",

92

7.5. GET /monitor

"ipaddr": null,

"status": [

"LOG_WARN"

],

"timestamp": "1502799843254",

"value": "[LOG_WARN]"

}

],

"s3GetLatency": null,

"s3GetTPS": null,

"s3GetThruput": {

"timestamp": "1502799843254",

"value": "0"

},

"s3PutLatency": {

"timestamp": "1502799843254",

"value": "130.1"

},

"s3PutTPS": {

"timestamp": "1502799843254",

"value": "0.0"

},

"s3PutThruput": {

"timestamp": "1502799843254",

"value": "0"

},

"status": {

"ipaddr": "",

"status": [

"OK"

],

"timestamp": "1502799843254",

"value": "[OK]"

}

}

7.5.4. Response Element Descriptions

Note Within the MonitorSystemInfo object, all statistics for which the data type (in the descriptions
below) is MonitorStat are formatted as "<statName>":{"timestamp":"<UTCMil-
liseconds>","value":"<statValue>"}.

diskAvailKb

(MonitorStat) Across the whole service region, the total mounted disk space that's still available for S3
object storage (HyperStore data directories) or Cassandra metadata storage (Cassandra data dir-
ectory). Reported as a number of kibibytes.

The following are deducted from the total amount of unused disk space to arrive at the "available" disk
space amount that is reported by the diskAvailKb statistic:

93

Chapter 7. monitor

l Each disk’s "reserved-blocks-percentage" (the portion of the disk that’s reserved for privileged
processes)

l Each HyperStore data disk's "stop-write" buffer (10% of capacity by default). For more inform-
ation on the stop-write feature see the "Automated Disk Management" section in the Cloudian
HyperStore Administrator's Guide.

Example:

"diskAvailKb": {"timestamp": "1502799843254","value": "61855592"}

Note Because the reserved-blocks-percentage and the stop-write buffer percentage are not
counted as available space, the diskUsedKb and diskAvailKb will add up to less than the
diskTotalKb.

Note The diskAvailKbvalue can potentially be larger than a 64 bit integer can hold.

diskTotalKb

(MonitorStat) Across the whole service region, the total size of the disks mounted for S3 object storage
(HyperStore data directories) or Cassandra metadata storage (Cassandra data directory). Reported as
a number of kibibytes.

Example:

"diskTotalKb": {"timestamp": "1502799843254","value": "88115680"}

Note This value can potentially be larger than a 64 bit integer can hold.

diskUsedKb

(MonitorStat) Across the whole service region, on disks that are mounted for S3 object storage (Hyper-
Store data directories) or Cassandra metadata storage (Cassandra data directory), the total disk space
that's used. Reported as a number of kibibytes.

Example:

"diskUsedKb": {"timestamp": "1502799843254","value": "23814368"}

Note This value can potentially be larger than a 64 bit integer can hold.

nodeStatuses

(List<NodeStatus>) List of NodeStatus objects, one for each node in the service region. Each nested
NodeStatus object consists of the following attributes:

hostname

(String) Hostname of the node. Example:

"hostname": "store1"

ipaddr

(String) This attribute will have value null. Example:

"ipaddr": null

94

7.5. GET /monitor

status

(List<string>) Status of the node. A list of one or more of the following strings: "OK","SVC_
DOWN","LOG_WARN", or "LOG_ERR". The meanings are:

l "OK" — All HyperStore services are up and running on the node, and the node has no
unacknowledged events.

l "SVC_DOWN"— One or more HyperStore services (Admin, Cassandra, HyperStore,
Redis QoS, Redis Credentials, Redis Monitor, or S3) is down on the node

l "LOG_WARN"— There are unacknowledged warnings in an application log on the node
(such as the S3 Service application log or the Cassandra application log).

l "LOG_ERR" — There are unacknowledged errors in an application service log.

Example:

"status": ["SVC_DOWN","LOG_WARN"]

timestamp

(String) Status timestamp in UTC milliseconds. Example:

"timestamp": "1502799843254"

value

(String) The "value" attribute will be the same as the "status" attribute, except formatted as a
single string rather than a list of strings. Example:

"value":"[SVC_DOWN, LOG_WARN]"

s3GetLatency

(MonitorStat) Across the whole service region, the 95th percentile request latency value for S3 GET
transactions, in milliseconds. New statistic values are calculated each five minutes, based on the most
recent approximately 1000 GET transactions. The s3GetLatency value indicates that of the last 1000
GET transactions, 95% completed in that many milliseconds or less.

Example:

"s3GetLatency": null

Note HEAD transactions are counted toward this stat also.

s3GetTPS

(MonitorStat) Across the whole service region, the number of S3 GET transactions processed per
second. This stat is recalculated each five minutes, based on the most recent five minutes of transaction
data. HEAD transactions are counted toward this stat also.

Example:

"s3GetTPS": null

s3GetThruput

(MonitorStat) Across the whole service region, the data throughput for S3 GET transactions, expressed
as bytes per second. This stat is recalculated each five minutes, based on the most recent five minutes
of transaction data. HEAD transactions are counted toward this stat also.

95

Chapter 7. monitor

Example:

"s3GetThruput": {"timestamp": "1502799843254","value": "0"}

s3PutLatency

(MonitorStat) Across the whole service region, the 95th percentile request latency value for S3 PUT
transactions, in milliseconds. New statistic values are calculated each five minutes, based on the most
recent approximately 1000 PUT transactions. The s3PutLatency value indicates that of the last 1000
PUT transactions, 95% completed in that many milliseconds or less.

Example:

"s3PutLatency": {"timestamp": "1502799843254","value": "130.1"}

Note POST transactions are counted toward this stat also.

s3PutTPS

(MonitorStat) Across the whole service region, the number of S3 PUT transactions processed per
second. This stat is recalculated each five minutes, based on the most recent five minutes of transaction
data. POST transactions are counted toward this stat also.

Example:

"s3PutTPS": {"timestamp": "1502799843254","value": "0.0"}

s3PutThruput

(MonitorStat) Across the whole service region, the data throughput for S3 PUT transactions, expressed
as bytes per second. This stat is recalculated each five minutes, based on the most recent five minutes
of transaction data. POST transactions are counted toward this stat also.

Example:

"s3PutThruput": {"timestamp": "1502799843254","value": "0"}

status

(ServiceStatus) High-level service status for the system as a whole. Formatted as {"ipaddr":
"<empty>","status": [<one of "OK" or "SVC_DOWN">],"timestamp": "<UTCMilliseconds>","value":
"<statusValueFormattedAsString>"}.

The "ipaddr" value will be empty or null.

The "status" will be formatted as a list but with just one member string. Status string meanings are:

l "OK" — All HyperStore services are up and running on all nodes in the service region.

l "SVC_DOWN"— A HyperStore service (Admin, Cassandra, HyperStore, Redis QoS, Redis Cre-
dentials, Redis Monitor, or S3) is down on one or more nodes in the service region.

The "value" attribute will be identical to the "status" attribute, except formatted as a string rather than as
a list.

Example:

"status": {"ipaddr": "","status": ["OK"],"timestamp": "1502799843254",

"value": "[OK]"}

96

7.5. GET /monitor

7.5.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Invalid region : {region}

7.5.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianMonitorRegion

l Parameters: Same as for GET /monitor, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /monitor except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianMonitorRegion permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianMonitorRegion

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianMonitorRegionResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<MonitorSystemInfo>

<status>

<timestamp>1534535223489</timestamp>

etc...

...

...

</MonitorSystemInfo>

</GetCloudianMonitorRegionResponse>

97

Chapter 7. monitor

7.6. GET /monitor/history

GET /monitor/history Get historical monitoring statistics for a node

7.6.1. Syntax

GET /monitor?nodeId=string[®ion=string]&statId=enum&startTime=string&endTime=string

There is no request payload.

7.6.2. Parameter Descriptions

nodeId

(Mandatory, string) The hostname of the target node.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

statId

(Mandatory, enum) The statistic for which to retrieve a history. The supported statistic IDs are listed in
the table below. Depending on the statistic, the returned history will include either one data point (one
instance of the statistic value) per minute or one data point per five minutes, across the time interval
bounded by the startTime and endTime specified in the request.

The GET /monitor/history call only supports one statistic ID per request. You cannot request multiple or
all statistics IDs in a single request.

For more information about a particular statistic, see "GET /monitor/host Get current monitoring stat-
istics for a node " (page 79).

StatId Data Point Frequency

diskIORead

Every minute
diskIOWrite

ioTx

ioRx

cpu

Every five minutes

s3GetTPS

s3PutTPS

s3GetThruput

s3PutThruput

s3GetLatency

s3PutLatency

adminHeapUsed

cassHeapUsed

hyperStoreHeapUsed

s3HeapUsed

98

7.6. GET /monitor/history

startTime

(Mandatory, string) The start time of the interval for which to retrieve the statistic history, in format
yyyyMMddHHmm (for example 201907200000). The system interprets this as a GMT time, so when spe-
cifying your desired start time do it in terms of the GMT time zone -- not the local time.

endTime

(Mandatory, string) The end time of the interval for which to retrieve the statistic history, in format
yyyyMMddHHmm (for example 201907201200). The system interprets this as a GMT time, so when spe-
cifying your desired end time do it in terms of the GMT time zone -- not the local time.

7.6.3. Example Using cURL

The example below retrieves history for the "cpu" statistic, for a one hour period (2019 July 20th, midnight to
1AM). Note that the system interprets the start and end times as GMT times.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/monitor/history?nodeId=

hs1&statId=cpu&startTime=201907201200&endTime=201907201300' \

| python -mjson.tool

The response payload is a JSON-formatted list of timestamp/value pairs (with the timestamps as
UTC milliseconds). Note that the response body does not include the statistic ID. Depending on the statistic,
there will be either one timestamp/value pair per minute or one timestamp/value pair per five minutes, through-
out the requested startTime / endTime interval. In this truncated example, it's one per five minutes.

[

{

"timestamp": "1563624003885",

"value": "0.21"

},

{

"timestamp": "1563624303754",

"value": "0.21"

},

{

"timestamp": "1563624603451",

"value": "0.21"

},

...

}

]

7.6.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing parameter : {parameter}

99

Chapter 7. monitor

Status Code Description

400 Both regionId and nodeId are empty

400 Invalid region : {region}

400 Invalid parameter : {parameter}

7.7. GET /monitor/notificationrules

GET /monitor/notificationrules Get the list of notification rules

7.7.1. Syntax

GET /monitor/notificationrules[?region=string]

There is no request payload.

7.7.2. Parameter Descriptions

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

7.7.3. Example Using cURL

The example below retrieves the current list of notification rules for the default service region.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/monitor/notificationrules | python -mjson.tool

The response payload is a JSON-formatted list of NotificationRule objects, which in this example is as follows.
The example is truncated so that only a few rules are shown.

[

{

"condition": ">",

"conditionVal": "0.9",

"email": "default",

"enabled": true,

"region": "",

"ruleId": "12",

"severityLevel": 1,

"snmpTrap": false,

"statId": "cpu"

},

{

"condition": "",

"conditionVal": "",

"email": "default",

"enabled": true,

"region": "",

100

7.8. POST /monitor/acknowledgeevents

"ruleId": "19",

"severityLevel": 3,

"snmpTrap": false,

"statId": "currentFailDiskInfo"

},

{

"condition": "<",

"conditionVal": "0.1",

"email": "default",

"enabled": true,

"region": "",

"ruleId": "11",

"severityLevel": 2,

"snmpTrap": false,

"statId": "diskAvail"

},

...

...

]

7.7.4. Response Element Descriptions

For description of NotificationRule object elements, see "PUT /monitor/notificationrule Create a new noti-
fication rule" (page 105).

7.7.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

7.8. POST /monitor/acknowledgeevents

POST /monitor/acknowledgeevents Acknowledge monitoring events

7.8.1. Syntax

POST /monitor/acknowledgeevents?nodeId=string[®ion=string]

The required request payload is a JSON-formatted EventsAck object. See example below.

7.8.2. Parameter Descriptions

nodeId

(Mandatory, string) The hostname of the target node.

region

(Optional, string) Service region. If you do not specify a region, the default region is assumed.

101

Chapter 7. monitor

7.8.3. Example Using cURL

The example below acknowledges two monitoring events from the node with hostname "store1" (the same two
events that were retrieved in the GET /monitor/events example). In this example the JSON-formatted Event-
sAck object is specified in a text file named event_acknowledge.txt which is then referenced as the data input
to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @event_acknowledge.txt \

https://localhost:19443/monitor/acknowledgeevents?nodeId=store1

The event_acknowledge.txt file content in this example is as follows.

{

"eventTypes":["13|/dev/mapper/vg0-root","14|"],

"nodeId":"store1"

}

7.8.4. Request Elements

eventTypes

(Mandatory, list<string>) List of the eventTypes being acknowledged. For non-log events (such as a ser-
vice down event or a threshold crossing event), the eventType is the integer ruleId value from the noti-
fication rule that triggered the event. For log events (events triggered by the writing of an application log
message), the eventType is formatted as "<ruleId>|<logCategory>". The specific eventTypes currently
present on a node can be retrieved with the GET /monitor/events method.

Example:

"eventTypes": ["13|/dev/mapper/vg0-root","14|"]

nodeId

(Mandatory, string) Hostname of the node on which the event(s) occurred. Example:

"nodeId": "store1"

regionId

(Optional, string) Name of service region in which the event(s) occurred. Defaults to the default service
region. Example:

"regionId": "southwest"

delete

(Optional, boolean) If this attribute is included and set to true then the events specified by the
"eventTypes" attribute will be immediately deleted from the system.

If this attribute is omitted or set to false then the events specified by the "eventTypes" attribute will be
marked as acknowledged but will not yet be deleted from system. Such acknowledged events will
instead be deleted automatically after a time period configured by the events.acknowledged.ttl property
in the mts.properties.erb configuration file. By default this period is 86400 seconds (one day).

Example:

"delete": true

102

7.9. POST /monitor/notificationruleenable

7.8.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter : {nodeId, events}

400 Invalid region : {region}

400 Invalid JSON object

7.9. POST /monitor/notificationruleenable

POST /monitor/notificationruleenable Enable or disable notification rules

7.9.1. Syntax

POST /monitor/notificationruleenable

The required request payload is a JSON-formatted NotificationRulesEnable object. See example below.

7.9.2. Usage Notes

You can use this method to disable notification rules or to re-enable rules that you've previously disabled.
When a notification rule is disabled the rule will not trigger system event notifications.

Note To disable or re-enable just one notification rule, you can use either the POST /mon-
itor/notificationruleenable method or the POST /monitor/notificationrule method. To disable or re-
enable multiple notification rules in one operation use the POST /monitor/notificationruleenable
method.

7.9.3. Example Using cURL

The example below disables two notification rules. In this example the JSON-formatted Noti-
ficationRulesEnable object is specified in a text file named rule_disable.txt which is then referenced as the
data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @rule_disable.txt https://localhost:19443/monitor/notificationruleenable

The rule_disable.txt file content in this example is as follows.

{

"enable":false,

"regionId":"",

"ruleList":["836da4bf-c6cc-4f73-afa3-9854ce407ca6","8ef63b63-4961-4e17-88c7-d53c966557db"]

}

There is no response payload.

103

Chapter 7. monitor

7.9.4. Request Element Descriptions

enable

(Mandatory, boolean) Set to true to enable the rule(s). Set to false to disable the rule(s). Example:

"enable":false

regionId

(Optional, string) Service region in which the rules are configured. If you do not specify a region, the
default region is assumed. Example:

"regionId":""

ruleList

(Mandatory, list<string>) List of ruleId(s) of the notification rule(s) to enable or disable.

If you do not know the ruleIds of the rules that you want to enable/disable, you can retrieve them by
using the GET /monitor/notificationrules method. That method returns a list of rules, which includes
each rule’s ruleId.

Example:

"ruleList":["836da4bf-c6cc-4f73-afa3-9854ce407ca6",

"8ef63b63-4961-4e17-88c7-d53c966557db"]

7.9.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {ruleId}

400 Notification rule does not exist : {ruleId}

7.10. POST /monitor/notificationrule

POST /monitor/notificationrule Change a notification rule

7.10.1. Syntax

POST /monitor/notificationrule

The required request payload is a JSON-formatted NotificationRule object. See example below.

7.10.2. Example Using cURL

The example below changes an existing notification rule (the rule that was created in the PUT /mon-
itor/notificationrule description). In this example the JSON-formatted NotificationRule object is specified in a
text file named rule_s3GetLatency.txt which is then referenced as the data input to the cURL command.

104

7.11. PUT /monitor/notificationrule

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @rule_s3GetLatency.txt https://localhost:19443/monitor/notificationrule

The rule_s3GetLatency.txt file content in this example is as follows.

{

"condition":">",

"conditionVal":"150",

"email":"default",

"enabled":true,

"region":"",

"ruleId":"836da4bf-c6cc-4f73-afa3-9854ce407ca6",

"severityLevel": 2,

"snmpTrap":false,

"statId":"s3GetLatency"

}

Note Unlike when you create a new notification rule, when you change an existing rule you must spe-
cify the rule's "ruleId" value in the NotificationRule object. If you're not sure of a rule's ID you can
retrieve it using the GET /monitor/notificationrules method.

7.10.3. Request Element Descriptions

For description of NotificationRule object elements, see "PUT /monitor/notificationrule Create a new noti-
fication rule" (page 105).

7.10.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Invalid JSON object

400 Notification rule Id does not exist : {ruleId}

7.11. PUT /monitor/notificationrule

PUT /monitor/notificationrule Create a new notification rule

7.11.1. Syntax

PUT /monitor/notificationrule

The required request payload is a JSON-formatted NotificationRule object. See example below.

105

Chapter 7. monitor

7.11.2. Usage Notes

The HyperStore system comes with many pre-configured notification rules. Before creating new rules, you can
review the existing pre-configured rules by going to the CMC's Alert Rules page.

Note The CMC interface uses the term "alert rules" rather than "notification rules".

7.11.3. Example Using cURL

The example below creates a new notification rule. In this example the JSON-formatted NotificationRule object
is specified in a text file named rule_s3GetLatency.txt which is then referenced as the data input to the cURL
command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:password \

-d @rule_s3GetLatency.txt https://localhost:19443/monitor/notificationrule

The rule_s3GetLatency.txt file content in this example is as follows.

{

"condition":">",

"conditionVal":"150",

"email":"default",

"enabled":true,

"region":"",

"ruleId":"",

"severityLevel": 1,

"snmpTrap":false,

"statId":"s3GetLatency"

}

7.11.4. Request Element Descriptions

condition

(Mandatory, string) Comparator used in defining this rule: can be ">", "<", or "=". Example:

"condition": ">"

conditionVal

(Mandatory, string) Value against which to compare. The value of the statistic specified by statId will be
compared to the conditionVal to determine whether a notification is called for. This statistic monitoring
occurs on each node.

For example for a rule that triggers notifications if CPU utilization on any individual node exceeds 90%,
the "statId" would be "cpu", the "condition" would be ">", and the "conditionVal" would be ".9".

Example:

"conditionVal": "0.9"

email

(Optional, string) Comma-separated list of email addresses to receive notifications. Or to use the default
email address list (as configured on the CMC's Configuration Settings page [Cluster -> Cluster Config

106

7.11. PUT /monitor/notificationrule

-> Configuration Settings]), set this to the string "default".

To not have email notifications as part of the rule (for instance, if the rule is only meant to trigger SNMP
traps), set the "email" attribute to empty ("").

This defaults to empty ("") if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"email": "default"

enabled

(Mandatory, boolean) Whether the rule is enabled, true or false.

This attribute defaults to false if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"enabled": true

region

(Optional, string) In a PUT /monitor/notificationrule request, use this attribute to specify the service
region in which to create the notification rule. To create the rule in the default region set this attribute to
the default region name or to empty (""). If you omit the "region" attribute in a PUT, then by default the
notification rule is created in the default region.

In a GET /monitor/notificationrules response, the "region" attribute will be present but set to empty. The
client application will be aware of what region the retrieved rules are from because the desired region is
specified in the GET request line.

Example:

"region": ""

ruleId

(Mandatory, string) System-generated unique ID for this rule. For the default notification rules that come
packaged with the HyperStore system this will be a simple integer like "1", "2", or "14". For rules that you
create yourself the system will generate a ruleId in the form of a UUID string like "8e4cc533-360a-4dd5-
bfe4-6b5f5b6c40da".

In a PUT (when you are creating a new rule), include the "ruleId" attribute and set it to empty (""). The
system will subsequently generate a ruleId upon rule creation.

In a POST (when you are updating an existing rule), set the "ruleId" attribute to the ruleId of the rule you
want to update. To find out what the ruleId is for a particular rule, use the GET /monitor/notificationrules
method.

Example:

"ruleId": "12"

severityLevel

(Mandatory, integer) Severity level to assign to the event. This is an integer with meaning as follows:

l 0 = Low

l 1 = Medium

107

Chapter 7. monitor

l 2 = High

l 3 = Critical

Example:

"severityLevel": 1

snmpTrap

(Optional, boolean) Whether to transmit an SNMP trap as part of the notification when this rule is
triggered, true or false. If a trap is sent it is sent to the destination configured on the CMC's Con-
figuration Settings page (Cluster -> Cluster Config -> Configuration Settings).

This defaults to false if the attribute is omitted in a PUT /monitor/notificationrule request.

Example:

"snmpTrap": false

statId

(Mandatory, string) ID of the node statistic being checked for this rule. The table below lists statistics for
which notification rules can be defined. These statistics are monitored on each node. Note that the
sample "conditionVal" column is not intended to suggest suitable values upon which to base notification
rules but simply to illustrate the applicable data format. The right-most column indicates whether a rule
for that statId already exists, as part of the default set of notification rules that come pre-packaged with
the HyperStore system.

Example:

"statId": "cpu"

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

s3GetTPS
Number of S3 GET trans-
actions per second on the
node.

">" "100" No

s3PutTPS
Number of S3 PUT trans-
actions per second on the
node.

">" "100" No

s3PutThruput
Number of bytes of through-
put per second for S3 PUT
operations on the node.

">" "100000" No

s3GetThruput
Number of bytes of through-
put per second for S3 GET
operations on the node.

">" "100000" No

s3PutLatency

Recent average latency for
S3 PUT operations on the
node, in number of mil-
liseconds.

">" "100" No

s3GetLatency

Recent average latency for
S3 GET operations on the
node, in number of mil-
liseconds.

">" "100" No

108

7.11. PUT /monitor/notificationrule

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

diskAvail

Of the node’s total disk space
allocated to HyperStore data
storage, the portion of disk
space that’s still free.
Expressed as a decimal
value.

"<" ".1"
Yes, for <
.1

diskInfo

On each individual disk that is
allocated to HyperStore data
storage, the portion of disk
space that’s still free.
Expressed as a decimal. This
rule triggers a notification if
any individual disk on the
node crosses the defined
threshold.

"<" ".15"
Yes, for <
.15

repairCompletionStatus

When this type of rule is set, a
notification is triggered any
time that an auto-repair com-
pletes. The notification
includes the auto-repair’s
final status: COMPLETED,
FAILED, or TERMINATED.

Set to empty
("")

Set to empty
("")

Yes

cpu
Current CPU utilization level
as a decimal value.

">" ".9"
Yes, for >
.9

ioRx

Total network bytes per
second received by the node
(S3 traffic plus any other net-
work traffic to the node).

">" "100000000" No

ioTx

Total network bytes per
second transmitted by the
node (S3 traffic plus any other
network traffic from the node).

">" "100000000" No

diskIORead
Bytes per second for disk
reads on the node.

">" "1000000" No

diskIOWrite
Bytes per second for disk
writes on the node.

">" "1000000" No

svcAdmin

Admin service status. One of
{SVC_DOWN, LOG_WARN,
LOG_ERR}. Note that for this
and the other "svc<Ser-
viceType>" statIds, you have
the option of creating multiple
rules — for example, one rule
for status "SVC_DOWN" and

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

109

Chapter 7. monitor

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

a second separate rule for
status "LOG_ERR". Do not
specify multiple service val-
ues in a single notification
rule.

svcCassandra
Cassandra service status.
One of {SVC_DOWN, LOG_
WARN, LOG_ERR}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

svcHyperStore
HyperStore service status.
One of {SVC_DOWN, LOG_
WARN, LOG_ERR}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
ERR

svcRedisCred
Redis Credentials service
status. One of {SVC_DOWN,
LOG_WARN}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
WARN

svcRedisQos
Redis QoS service status.
One of {SVC_DOWN, LOG_
WARN}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one
rule for
LOG_
WARN

svcRedisMon
Redis Monitor service status.
Only supported value is
"SVC_DOWN".

"=" "SVC_DOWN"
Yes, for
SVC_
DOWN

svcS3
S3 service status. One of
{SVC_DOWN, LOG_WARN,
LOG_ERR}.

"=" "SVC_DOWN"

Yes, one
rule for
SVC_
DOWN
and one

110

7.11. PUT /monitor/notificationrule

statId Description Appropriate
"condition"

Sample "con-
ditionVal"

Pre-Pack-
aged Rule
Exist?

Note Along with log
warnings and errors
pertaining to provid-
ing S3 service to cli-
ents, the S3 service
alerts category
includes log warnings
and errors pertaining
to auto-tiering and
cross-region rep-
lication.

rule for
LOG_
ERR

7.11.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Invalid JSON object

111

This page left intentionally blank

Chapter 8. permissions
The Admin API methods built around the permissions resource are for creating, changing, or retrieving public
URL permissions for an object that's stored in the HyperStore system. When you create a public URL for an
object, the object can then be accessed at that URL by a regular web browser.

Methods associated with the permissions resource:

l "GET /permissions/publicUrl" (page 113)

l "POST /permissions/publicUrl" (page 115)

8.1. GET /permissions/publicUrl

GET /permissions/publicUrl Get public URL permissions for an object

8.1.1. Syntax

GET /permissions/publicUrl?userId=string&groupId=string&bucketName=string&objectName=string

There is no request payload.

8.1.2. Parameter Descriptions

userId

(Mandatory, string) User ID for user who owns the object.

groupId

(Mandatory, string) Group ID for user who owns the object.

bucketName

(Mandatory, string) S3 bucket that contains the object. Note that the bucket’s owner must be the same
as the object owner or the request will be rejected with a 400 error response.

objectName

(Mandatory, string) Name of the object for which the public URL is being retrieved.

8.1.3. Usage Notes

Use this method to retrieve existing public URL permissions for an object (public URL permissions that have
already been created with the POST /permissions/publicUrlmethod).

8.1.4. Example Using cURL

The example below retrieves an existing public URL for an object named ob.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/permissions/publicUrl?userId=u1&groupId=g1&bucketName=b1&objectName=ob' \

| python -mjson.tool

113

Chapter 8. permissions

The response payload is a JSON-formatted PublicUrlAccess object, which in this example is as follows.

{

"allowRead": true,

"currentDownloads": 0,

"expiryTime": "1517385600000",

"maxDownloadNum": 1000,

"secure": true,

"url": "https://s3-region1.mycloudianhyperstore.com/b1/ob?

AWSAccessKeyId=00b3ec480eb5c844fb88&Expires=1517385600&Signature=

rxxJnEWoUusrj1kQ02A9PMcFQ4U%3D&x-amz-pt=MDAzMTE1NjIxNTE2MTE4NzIxMDc1"

}

8.1.5. Response Element Descriptions

allowRead

(Optional, boolean) Whether a public URL is enabled for the associated object, true or false. Defaults to
true. Example:

"allowRead": true

currentDownloads

(Optional, number) Current total number of times that the object has been downloaded via public URL.
This value is set by the system, not by the client. Starts at 0 for a new public URL. Example:

"currentDownloads": 0

expiryTime

(Mandatory, string) Expiration date-time of the public URL in UTC milliseconds. After this date-time the
public URL will no longer work. Example:

"expiryTime": "1517385600000"

maxDownloadNum

(Optional, number) Maximum number of times that the system will allow the object to be downloaded via
public URL, by all users in total. To allow unlimited downloads, set this to "-1". Defaults to 1000.
Example:

"maxDownloadNum": 1000

secure

(Optional, boolean) Whether the object’s public URL should use HTTPS rather than HTTP, true or false.
Defaults to true. Example:

"secure": true

url

(Optional, string) System-generated public URL for accessing the object.

With a POST request:

l To create a new public URL for an object do not include the "url" attribute in the request body.

l To change permission attributes for an existing public URL, use the "url" attribute in the request
body to specify the existing public URL.

114

8.2. POST /permissions/publicUrl

The public URL for an object will have the following format:

http[s]://<bucketName>.<S3Domain>/<objectName>?AWSAccesKeyId=

<accessKeyOfObjectOwner>&Expires=<expiryTime>&Signature=<signatureString>&

x-amz-pt=<internalTrackingCode>

This format follows the AWS specification for signed URLs.

Example:

"url": "https://s3-region1.mycloudianhyperstore.com/bkt1/Cloudian.pdf?

AWSAccessKeyId=00b3ec480eb5c844fb88&Expires=1517385600&Signature=

rxxJnEWoUusrj1kQ02A9PMcFQ4U%3D&x-amz-pt=MDAzMTE1NjIxNTE2MTE4NzIxMDc1"

8.1.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter : {userId, groupId, bucketName, objectName}

400 User does not exist

8.2. POST /permissions/publicUrl

POST /permissions/publicUrl Create or change public URL permissions for an
object

8.2.1. Syntax

POST /permissions/publicUrl?userId=string&groupId=string&bucketName=string&objectName=string

The required request payload is a JSON-formatted PublicUrlAccess object. See "Example Using cURL" below.

8.2.2. Parameter Descriptions

userId

(Mandatory, string) User ID for user who owns the object.

groupId

(Mandatory, string) Group ID for user who owns the object.

bucketName

(Mandatory, string) S3 bucket that contains the object. Note that the bucket’s owner must be the same
as the object owner or the request will be rejected with a 400 error response.

objectName

(Mandatory, string) Name of the object for which a public URL is being generated.

115

Chapter 8. permissions

8.2.3. Usage Notes

Use this method to create or update public URL permissions for an object that’s stored in the HyperStore sys-
tem. See the Example section below for the distinction between creating a new public URL and updating an
existing one.

For this method to work, the object owner must also be the bucket owner. Also, the method will not work if the
object has been encrypted using a user-managed encryption key (SSE-C).

The public URL for an object will have the following format:

http[s]://<bucketName>.<S3Domain>/<objectName>?AWSAccesKeyId=<accessKeyOfObjectOwner>

&Expires=<expiryTime>&Signature=<SignatureString>&x-amz-pt=<>

This format follows the AWS specification for signed URLs.

8.2.4. Example Using cURL

The example below creates a public URL for an object named ob. In this example the JSON-formatted
PublicUrlAccess object is specified in a text file named postPublicUrlAccess.txt which is then referenced as the
data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @postPublicUrlAccess.txt \

'https://localhost:19443/permissions/publicUrl?userId=u1&groupId=g1&bucketName=b1&objectName=ob'

The postPublicUrlAccess.txt file content in this example is as follows.

{

"allowRead": true,

"expiryTime": "1517385600000",

"maxDownloadNum": 1000,

"secure": true

}

Note If the PublicUrlAccess JSON object supplied in the POST request body does not include a "url"
attribute -- as it does not in the example above -- the POST request is processed as a request to gen-
erate a new public URL. If a "url" attribute value is included in the PublicUrlAccess object and set to
equal an existing public URL, the POST request is processed as an update to the permissions asso-
ciated with the existing public URL (such as an update of the expiration date-time or the maximum
allowed downloads limit).

To retrieve a public URL that you've just created or that you've created previously, use the GET /per-
missions/publicUrl method.

There is no response payload.

8.2.5. Request Element Descriptions

allowRead

(Optional, boolean) Whether a public URL is enabled for the associated object, true or false. Defaults to
true. Example:

"allowRead": true

116

8.2. POST /permissions/publicUrl

expiryTime

(Mandatory, string) Expiration date-time of the public URL in UTC milliseconds. After this date-time the
public URL will no longer work. Example:

"expiryTime": "1517385600000"

maxDownloadNum

(Optional, number) Maximum number of times that the system will allow the object to be downloaded via
public URL, by all users in total. To allow unlimited downloads, set this to "-1". Defaults to 1000.
Example:

"maxDownloadNum": 1000

secure

(Optional, boolean) Whether the object’s public URL should use HTTPS rather than HTTP, true or false.
Defaults to true. Example:

"secure": true

8.2.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter : {userId, groupId, bucketName, objectName}

400 User does not exist

400 Invalid JSON object

117

This page left intentionally blank

Chapter 9. qos
The Admin API methods built around the qos resource are for managing HyperStore quality of service (QoS)
controls. These controls set limits on service usage by user groups and by individual users. There are API meth-
ods for assigning, retrieving, or deleting QoS settings for specified users or groups.

For an overview of the HyperStore quality of service feature, see "Quality of Service (QoS) Feature Overview" in
the Cloudian HyperStore Administrator's Guide.

Methods associated with the qos resource:

l "DELETE /qos/limits" (page 119)

l "GET /qos/limits" (page 120)

l "POST /qos/limits" (page 125)

9.1. DELETE /qos/limits

DELETE /qos/limits Delete QoS settings for a user or group

9.1.1. Syntax

DELETE /qos/limits?userId=string&groupId=string[®ion=string]

There is no request payload.

9.1.2. Parameter Descriptions

userId

(Mandatory, string) User ID of the user to whom the QoS settings apply. Supported options are a specific
user ID, "ALL", or "*".

See the "groupId" description below for information about how to use the "userId" and "groupId" para-
meters in combination to designate different levels of QoS settings.

groupId

(Mandatory, string) Group ID of the group to which the QoS settings apply.

You can use the "userId" and "groupId" parameters in combination to designate different levels of QoS
settings:

l User-level QoS for a specific user (userId=<userId>&groupId=<groupId>)

l Default user-level QoS for a specific group (userId=ALL&groupId=<groupId>)

l Group-level QoS for a specific group (userId=*&groupId=<groupId>)

region

(Optional, string) Service region to which the QoS settings apply. If not specified, the default region is
assumed.

119

Chapter 9. qos

9.1.3. Usage Notes

Use this method to:

l Delete QoS limits that have been assigned to a specific user. If you delete user-specific QoS limits, the
system will automatically assign the user the default user-level QoS limits associated with the group to
which the user belongs.

l Delete QoS limits that have been assigned to a specific group. If you delete group-specific QoS limits,
the system will automatically assign the group the regional default QoS limits.

Essentially, this method allows you to clear user-specific or group-specific QoS overrides so that default QoS
settings are used instead.

9.1.4. Example Using cURL

The example below deletes QoS settings for the "Dev" group. With these group-specific settings deleted, the
default group QoS settings for the service region will be applied to the Dev group.

curl -X DELETE -k -u sysadmin:password \

'https://localhost:19443/qos/limits?userId=*&groupId=Dev'

9.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {userId, groupId}

400 Region {region} is invalid

9.2. GET /qos/limits

GET /qos/limits Get QoS settings for a user or group

9.2.1. Syntax

GET /qos/limits?userId=string&groupId=string[®ion=string]

There is no request payload.

9.2.2. Parameter Descriptions

userId

(Mandatory, string) User ID of the user to whom the QoS settings apply. Supported options are a specific
user ID, "ALL", or "*".

See the groupId description below for information about how to use the "userId" and "groupId" para-
meters in combination to designate different levels of QoS settings.

120

9.2. GET /qos/limits

groupId

(Mandatory, string) Group ID of the group to which the QoS settings apply. Supported options are a spe-
cific group ID, "ALL", or "*".

You can use the "userId" and "groupId" parameters in combination to designate different levels of QoS
settings:

l User-level QoS for a specific user (userId=<userId>&groupId=<groupId>)

l Default user-level QoS for a specific group (userId=ALL&groupId=<groupId>)

l Default user-level QoS for the whole region (userId=ALL&groupId=*)

l Group-level QoS for a specific group (userId=*&groupId=<groupId>)

l Default group-level QoS for the whole region (userId=*&groupId=ALL)

region

(Optional, string) Service region to which the QoS settings apply. If not specified, the default region is
assumed.

9.2.3. Example Using cURL

The example below retrieves current QoS settings for the user "cody" in the "Dev" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/qos/limits?userId=cody&groupId=Dev' \

| python -mjson.tool

The response payload is a JSON-formatted QosLimitSettings object, which in this example is as follows.

{

"groupId": "Dev",

"labelId": "qos.userQosOverrides.title",

"qosLimitList": [

{

"type": "STORAGE_QUOTA_KBYTES_LW",

"value": -1

}, {

"type": "STORAGE_QUOTA_KBYTES_LH",

"value": 1073741824

},

{

"type": "REQUEST_RATE_LW",

"value": -1

},

{

"type": "REQUEST_RATE_LH",

"value": -1

},

{

"type": "DATAKBYTES_IN_LW",

"value": -1

},

{

"type": "DATAKBYTES_IN_LH",

121

Chapter 9. qos

"value": -1

},

{

"type": "DATAKBYTES_OUT_LW",

"value": -1

},

{

"type": "DATAKBYTES_OUT_LH",

"value": -1

},

{

"type": "STORAGE_QUOTA_COUNT_LW",

"value": -1

},

{

"type": "STORAGE_QUOTA_COUNT_LH",

"value": -1

}

],

"userId": "cody"

}

9.2.4. Response Element Descriptions

groupId

(String) Group ID. This will be either a specific group ID, or "ALL", or "*". For details of how this is used,
see "Parameter Descriptions" (page 120).

Example:

"groupId": "Dev"

labelId

(String) This attribute is used by the CMC to display the correct title on a group or user QoS con-
figuration screen. Example:

"labelId": "qos.userQosOverrides.title"

qosLimitList

(List<QosLimit>) List ofQosLimit objects. There will be one QosLimit object for each of the eight QoS
limit types. Each QosLimit object consists of the following attributes:

type

(String) One of the following QoS limit types:

l STORAGE_QUOTA_KBYTES (possible legacy value from systems originally installed as
7.4.x or older; equivalent to STORAGE_QUOTA_KBYTES_LH)

l STORAGE_QUOTA_KBYTES_LW

l STORAGE_QUOTA_KBYTES_LH

l STORAGE_QUOTA_COUNT (possible legacy value from systems originally installed as
7.4.x or older; equivalent to STORAGE_QUOTA_COUNT_LH)

l STORAGE_QUOTA_COUNT_LW

122

9.2. GET /qos/limits

l STORAGE_QUOTA_COUNT_LH

l REQUEST_RATE_LW

l REQUEST_RATE_LH

l DATAKBYTES_IN_LW

l DATAKBYTES_IN_LH

l DATAKBYTES_OUT_LW

l DATAKBYTES_OUT_LH

For descriptions of these QoS limits see "POST /qos/limits Create QoS settings for a user or
group" (page 125), specifically the Parameter Descriptions section. Note that as request para-
meters these limits have slightly different names than they have as JSON object attributes. For
example the limit named "hlStorageQuotaKBytes" as a request parameter for the POST /qos/lim-
its call is named "STORAGE_QUOTA_KBYTES_LH" as a response body element for the GET
/qos/limits call.

Note The limits having to do with data size are in number of kibibytes (KiBs), not number
of kilobytes (KBs).

Example:

"type": "STORAGE_QUOTA_KBYTES_LH"

value

(Number) The value assigned to this QoS limit type. A value of -1 indicates that the limit is dis-
abled. Example:

"value": 1073741824

userId

(String) User ID. This will be either a specific user ID, or "ALL", or "*". For details of how this is used, see
"Parameter Descriptions" (page 120). Example:

"userId": "cody"

9.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 User does not exist

400 Missing required parameter : {userId, groupId}

400 Region {region} is invalid

9.2.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

123

Chapter 9. qos

l Action name:GetCloudianQosLimits

l Parameters: Same as for GET /qos/limits, except parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /qos/limits except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get QoS limits for any group or user

o HyperStore group admin user can only get QoS limits for own group or users within own group

o HyperStore regular user can only get own QoS limits

o IAM user can only use this method if granted admin:GetCloudianQosLimits permission by an
IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianQosLimits" action retrieves QoS limit information for Cloudian
HyperStore user accounts, not for subsidiary IAM users. The system does not maintain
QoS limits per IAM user. For example, if a HyperStore group administrator grants
admin:GetCloudianQosLimits permission to an IAM user, the IAM user will be able to
retrieve QoS limits for any HyperStore user in the group administrator's group. And if a
HyperStore regular user grants admin:GetCloudianQosLimits permission to an IAM user,
the IAM user will be able to retrieve QoS limits for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianQosLimits&UserId=cody&GroupId=Dev

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianQosLimitsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<UserQosOverrides>

<groupId>Pubs</groupId>

etc...

...

...

</UserQosOverrides>

<GetCloudianQosLimitsResponse>

124

9.3. POST /qos/limits

9.3. POST /qos/limits

POST /qos/limits Create QoS settings for a user or group

9.3.1. Syntax

POST /qos/limits?userId=string&groupId=string&wlStorageQuotaKBytes=integer

&hlStorageQuotaKBytes=integer&wlStorageQuotaCount=integer&hlStorageQuotaCount=integer

&wlRequestRate=integer&hlRequestRate=integer&wlDataKBytesIn=integer&hlDataKBytesIn=integer

&wlDataKBytesOut=integer&hlDataKBytesOut=integer[®ion=string]

There is no request body payload.

9.3.2. Parameter Descriptions

userId

(Mandatory, string) User ID of the user to whom the QoS settings apply. Supported options are a specific
user ID, "ALL", or "*".

See the groupId description below for information about how to use the "userId" and "groupId" para-
meters in combination to designate different levels of QoS settings.

groupId

(Mandatory, string) Group ID of the group to which the QoS settings apply. Supported options are a spe-
cific group ID, "ALL", or "*".

You can use the "userId" and "groupId" parameters in combination to designate different levels of QoS
settings:

l User-level QoS for a specific user (userId=<userId>&groupId=<groupId>)

l Default user-level QoS for a specific group (userId=ALL&groupId=<groupId>)

l Default user-level QoS for the whole region (userId=ALL&groupId=*)

l Group-level QoS for a specific group (userId=*&groupId=<groupId>)

l Default group-level QoS for the whole region (userId=*&groupId=ALL)

wlStorageQuotaKBytes

(Mandatory, integer) Storage quota warning threshold ("soft limit"), in number of KiBs

Implementation detail:

l For user QoS— If a user’s total stored data reaches this limit, a WARN level message is written
to the S3 Service's application log.

l For group QoS— If a group’s total stored data reaches this limit, a WARN level message is writ-
ten to the S3 Service's application log.

hlStorageQuotaKBytes

(Mandatory, integer) Storage quota maximum ("hard limit"), in number of KiBs

Implementation detail:

125

Chapter 9. qos

l For user QoS— If a user’s total stored data reaches this limit, the user will be blocked from
uploading additional data until she deletes some of her currently stored data. Also, a WARN
level message is written to the S3 Service's application log.

l For group QoS— If a group’s total stored data reaches this limit, all of the group’s users will be
blocked from uploading additional data until some of their currently stored data is deleted. Also,
a WARN level message is written to the S3 Service's application log.

wlStorageQuotaCount

(Mandatory, integer) Storage quota warning threshold ("soft limit"), in total number of objects. Note that
folders count as objects, as well as files.

Implementation detail:

l For user QoS— If a user’s total stored data reaches this limit, a WARN level message is written
to the S3 Service's application log.

l For group QoS— If a group’s total stored data reaches this limit, a WARN level message is writ-
ten to the S3 Service's application log.

hlStorageQuotaCount

(Mandatory, integer) Storage quota maximum ("hard limit"), in total number of objects. Note that folders
count as objects, as well as files.

Implementation detail:

l For user QoS— If a user’s total stored data reaches this limit, the user will be blocked from
uploading additional data until she deletes some of her currently stored data. Also, a WARN
level message is written to the S3 Service's application log.

l For group QoS— If a group’s total stored data reaches this limit, all of the group’s users will be
blocked from uploading additional data until some of their currently stored data is deleted. Also,
a WARN level message is written to the S3 Service's application log.

wlRequestRate

(Mandatory, integer) Request rate warning threshold ("soft limit"), in total number of HTTP requests per
minute.

Implementation detail:

l For user QoS—On receipt of a first HTTP request from a user, a 60 second timer is started for
that user. If during the 60 seconds the total number of requests reaches the Request Rate Warn-
ing Limit, a WARN level message is written to the S3 Service’s application log, and requests
from the user continue to be fulfilled. At the end of the 60 seconds, the request counter for the
user is reset. Subsequently, the next request that comes in from the user triggers the start of a
new 60 second interval, and the process repeats.

l For group QoS— The implementation is the same as for user QoS, except that it applies to
requests from all users in the group, in the aggregate. For example, a request from any user in
the group triggers the start of the 60 second timer, and subsequent requests from any user in the
group are counted toward the per-minute total.

HTTP DELETE requests are not counted toward Request Rate controls.

hlRequestRate

(Mandatory, integer) Request rate maximum ("hard limit"), in total number of HTTP requests per minute.

Implementation detail:

126

9.3. POST /qos/limits

l For user QoS—On receipt of a first request from a user, a 60 second timer is started for that user
(the same timer described in Request Rate Warning Limit). If during the 60 seconds the number
of requests reaches Request Rate High Limit, the system temporarily blocks all requests from
the user (and also writes a WARN level message to the S3 Service’s application log). At the end
of the 60 seconds the block on requests is released and the request counter is reset. Sub-
sequently, the next request that comes in from the user triggers the start of a new 60 second inter-
val, and the process repeats.

l For group QoS— The implementation is the same as for user QoS, except that it applies to
requests from all users in the group, in the aggregate. For example, a request from any user in
the group triggers the start of the 60 second timer, and subsequent requests from any user in the
group are counted toward the per-minute total. If a block is triggered by the high limit being
reached, the block applies to all users in the group.

wlDataKBytesIn

(Mandatory, integer) Inbound data rate warning threshold ("soft limit"), in KiBs per minute.

This works the same as described for the Request Rate Warning Limit, except what’s counted during
each timed 60 second interval is inbound kibibytes of data.

hlDataKBytesIn

(Mandatory, integer) Inbound data rate maximum ("hard limit"), in KiBs per minute.

This works the same as described for the Request Rate High Limit, except what’s counted during each
timed 60 second interval is inbound kibibytes of data. Note that if a block is triggered by the Data Bytes
IN High Limit being reached, the block applies to all HTTP request types (not just PUTs.)

wlDataKBytesOut

(Mandatory, integer) Outbound data rate warning threshold ("soft limit"), in KiBs per minute.

This works the same as described for the Request Rate Warning Limit, except what’s counted during
each timed 60 second interval is outbound kibibytes of data.

wlDataKBytesOut

(Mandatory, integer) Outbound data rate maximum ("hard limit"), in KiBs per minute.

This works the same as described for the Request Rate High Limit, except what’s counted during each
timed 60 second interval is outbound kibibytes of data. Note that if a block is triggered by the Data Bytes
OUT High Limit being reached, the block applies to all HTTP request types (not just GETs.)

region

(Optional, string) Service region to which the QoS settings apply. If not specified, the default region is
assumed.

9.3.3. Usage Notes

This method creates user-level or group-level QoS settings. User-level QoS settings place an upper limit on the
storage utilization and transaction activities of individual users, while group-level QoS settings place such lim-
its on entire user groups.

You must include each of the QoS type query parameters, even those types for which you do not want to set a
limit. To disable a type set it to "-1".

127

Chapter 9. qos

In a multi-region HyperStore deployment, you must establish QoS limits separately for each region. The QoS
limits that you establish for a region will be applied only to activity in that region.

IMPORTANT ! By default the HyperStore system’s enforcement of QoS restrictions is disabled. For
information about enabling the QoS feature -- and information about the option of having the system
generate alerts when users hit QoS thresholds -- see "Enabling QoS Enforcement and Alerting" in the
"Setting Up Quality of Service Controls" section in the Cloudian HyperStore Administrator's Guide.

Note The system does not notify users who have exceeded a QoS Warning Limit.

9.3.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400
Missing required parameters : {userId, groupId, wlStorageQuotaKBytes, hlSt-
orageQuotaKBytes, wlStorageQuotaCount, hlStorageQuotaCount, wlRequestRate,
hlRequestRate, wlDataKBytesIn, hlDataKBytesIn, wlDataKBytesOut, hlDataKBytesOut}

400 Invalid parameter

400 Region {region} is invalid

128

Chapter 10. ratingPlan
The Admin API methods built around the ratingPlan resource are for managing HyperStore rating plans. Rat-
ing plans assigning pricing to various types and levels of service usage, in support of billing users or charging
back to an organization’s business units. There are methods for creating, changing, and deleting rating plans.

For an overview of the HyperStore billing feature, see Billing Feature Overview.

Note By default the system only supports billing based on number of stored bytes. If you want your rat-
ing plans to include billing based on request rates or data transfer rates you must enable the "Track-
/Report Usage for Request Rates and Data Transfer Rates" setting in the CMC’s Configuration
Settings page (Cluster -> Cluster Config -> Configuration Settings).

Methods associated with the ratingPlan resource:

l "DELETE /ratingPlan" (page 129)

l "GET /ratingPlan" (page 130)

l "GET /ratingPlan/list" (page 132)

l "POST /ratingPlan" (page 133)

l "PUT /ratingPlan" (page 134)

10.1. DELETE /ratingPlan

DELETE /ratingPlan Delete a rating plan

10.1.1. Syntax

DELETE /ratingPlan?ratingPlanId=string

There is no request payload.

10.1.2. Parameter Descriptions

ratingPlanId

(Mandatory, string) Unique identifier of the rating plan.

10.1.3. Example Using cURL

The example below deletes a rating plan with ID "Plan-6".

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/ratingPlan?ratingPlanId=Plan-6

129

Chapter 10. ratingPlan

10.1.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Rating Plan does not exist

400 Missing required parameter : {ratingPlanId}

10.2. GET /ratingPlan

GET /ratingPlan Get a rating plan

10.2.1. Syntax

GET /ratingPlan?ratingPlanId=string

There is no request payload.

10.2.2. Parameter Descriptions

ratingPlanId

(Mandatory, string) Unique identifier of the rating plan.

10.2.3. Example Using cURL

The example below retrieves the system default rating plan, which has ID "Default-RP".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/ratingPlan?ratingPlanId=Default-RP python -mjson.tool

The response payload is a JSON-formatted RatingPlan object, which in this example is as follows.

{

"currency": "USD",

"id": "Default-RP",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "1",

"second": "0.20"

},

{

"first": "0",

"second": "0.10"

}

]

130

10.2. GET /ratingPlan

},

"BO": {

"ruleclassType": "BYTES_OUT",

"rules": [

{

"first": "1",

"second": "0.20"

},

{

"first": "0",

"second": "0.10"

}

]

},

"HD": {

"ruleclassType": "HTTP_DELETE",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "10",

"second": "0.02"

},

{

"first": "0",

"second": "0.01"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0.02"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "1",

"second": "0.14"

},

{

131

Chapter 10. ratingPlan

"first": "5",

"second": "0.12"

},

{

"first": "0",

"second": "0.10"

}

]

}

},

"name": "Default Rating Plan"

}

10.2.4. Response Element Descriptions

For RatingPlan element descriptions see "PUT /ratingPlan Create a new rating plan" (page 134)

10.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

400 Missing required parameter: {ratingPlanId}

10.3. GET /ratingPlan/list

GET /ratingPlan/list Get the list of rating plans in the system

10.3.1. Syntax

GET /ratingPlan/list

There is no request payload.

10.3.2. Example Using cURL

The example below retrieves the list of rating plans that are in the system. Note that this method does not
return the full content of the rating plans -- just the ID, name, and currency for each plan.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/ratingPlan/list | python -mjson.tool

The response payload in this example is as follows.

[

{

"currency": "USD",

132

10.4. POST /ratingPlan

"encodedId": "Default-RP",

"id": "Default-RP",

"name": "Default Rating Plan"

},

{

"currency": "USD",

"encodedId": "Whitelist-RP",

"id": "Whitelist-RP",

"name": "Whitelist Rating Plan"

}

]

Note The "encodedId" value is a URL-encoding of the "id" value.

10.3.3. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

10.4. POST /ratingPlan

POST /ratingPlan Change a rating plan

10.4.1. Syntax

POST /ratingPlan

The required request payload is a JSON-formatted RatingPlan object.

10.4.2. Example Using cURL

The example below modifies the rating plan that was created in the PUT /ratingPlan example. Again the Rat-
ingPlan object is specified in a text file named ratingStorageOnly.txt which is then referenced as the data input
to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @ratingStorageOnly.txt https://localhost:19443/ratingPlan

Note that in editing the RatingPlan object in the ratingStorageOnly.txt file you could edit any attribute except for
the "id" attribute. The "id" attribute must remain the same, so that you're modifying an existing rating plan rather
than creating a new one. For an example RatingPlan object see PUT /ratingPlan.

10.4.3. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Rating Plan does not exist

133

Chapter 10. ratingPlan

Status Code Description

400 Missing required parameter : {id, name}

400 Invalid JSON Object

10.5. PUT /ratingPlan

PUT /ratingPlan Create a new rating plan

10.5.1. Syntax

PUT /ratingPlan

The required request payload is a JSON-formatted RatingPlan object. See example below.

10.5.2. Example Using cURL

The example below creates a new rating plan that charges users based only on storage level, with no charges
for traffic. In this example the JSON-formatted RatingPlan object is specified in a text file named rat-
ingStorageOnly.txt which is then referenced as the data input to the cURL command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:password \

-d @ratingStorageOnly.txt https://localhost:19443/ratingPlan

The ratingStorageOnly.txt file content in this example is as follows.

{

"currency": "USD",

"id": "Storage-Only",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"BO": {

"ruleclassType": "BYTES_OUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HD": {

"ruleclassType": "HTTP_DELETE",

134

10.5. PUT /ratingPlan

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "100",

"second": "0.2"

},

{

"first": "0",

"second": "0.15"

}

]

}

},

"name": "Storage Bytes Only"

}

10.5.3. Request Elements

currency

(Optional, string) An international currency code (such as "USD", "JPY", or "EUR"). Defaults to "USD".
Example:

"currency": "USD"

id

(Mandatory, string) Unique identifier that you assign to the rating plan. Example:

"id": "Default-RP"

135

Chapter 10. ratingPlan

mapRules

(Optional, map<string,RuleClass>) Map of rating rules per service dimension. The string is the service
dimension acronym. For each <string,RuleClass> combination the string is one of "BI" (bytes in), "BO"
(bytes out), "HG" (HTTP GETs), "HP" (HTTP PUTs), "HD" (HTTP DELETEs), or "SB" (storage bytes). For
each service dimension there is a corresponding RuleClassobject that expresses the rating rules for
that service dimension.

Example:

"BI": {RuleClass}

Note You can omit the mapRules entirely in the unlikely event that you want to create a rating
plan that does not charge for anything. But if you do include a mapRules map you must set a
<string,RuleClass> combination for each of the six service dimensions, including dimensions for
which you do not want to charge.

The RuleClass object consists of the following attributes and nested objects:

ruleclassType

(String) Type of rating rule: one of {STORAGE_BYTE, BYTES_IN, BYTES_OUT, HTTP_GET,
HTTP_PUT, HTTP_DELETE}. These are the service usage dimensions for which pricing can be
set. Example:

"ruleclassType": "BYTES_IN"

rules

(List<Pair>) List of rating rules to apply to the rule class type. There is one rule (one Pairobject)
per pricing tier.

Each Pair object consists of the following attributes:

first

(String) Rating tier size, as a number of units. In the first Pair within a list of Pair objects,
the "first" attribute specifies the N in the rating rule "The first N units are to be priced at X
per unit". (The specific units follow from the service usage type. See "Service Usage
Units" (page 137) below). In the next Pair object in the list, the "first" attribute specifies the
N in "The next N units are to be priced at X per unit"; and so on. For your final tier — for pri-
cing additional units above and beyond the already defined tiers — use "0" as the value
for the "first" attribute. For an example see the description of "second" below.

second

(String) For the rating tier specified by the "first" attribute, the rate per unit. The rate is spe-
cified as an integer or decimal. (The currency is as specified in the parent
RatingPlanobject.) For example, suppose the currency is set as dollars in the
RatingPlanobject, and you want the first 10 units to be charged at $2 per unit, the next 10
units to be priced at $1.50 per unit, and any additional units to be charged at $1 per unit.
Your first Pair would be:

{"first":"10","second":"2.00"}

Your next Pair would be:

{"first":"10","second":"1.50"}

Your third and final Pair would be:

136

10.5. PUT /ratingPlan

{"first":"0","second":"1.00"}

Note For each service dimension that you do not want to charge for, specify just
one Pair object with both "first" and "second" set to "0".

10.5.3.1. Service Usage Units

In a Pair object, the "first" attribute indicates a number of units constituting a pricing tier, and the
"second" attribute indicates the price per unit within that pricing tier. What constitutes a unit
depends on the service usage type that the rating rule is being applied to. For illustration sup-
pose that in the examples below, the currency (as specified in the parent RatingPlan object) is
dollars.

l For storage bytes (SB), the unit is GiB-month— the average number of GiBs of data
stored for the month (which is calculated by summing the month’s hourly readings of
stored bytes, converting to GiB, then dividing by the number of hours in the month). So if
in a Pair object the "first" attribute is set to "5" and the "second" attribute is set to "2", this
means that within this pricing tier which spans 5 GiB-month, the charge is $2 per GiB-
month.

l For data transfer bytes in or out (BI or BO), the unit is number of GiBs. So if in a Pair
object the "first" attribute is set to "5" and the "second" attribute is set to "2", this means
that within this pricing tier which spans 5 GiBs, the charge is $2 per GiB.

l For HTTP GETs, PUTs, or DELETEs (HG, HP, or HD), the unit is blocks of 10,000
requests. So if in a Pair object the "first" attribute is set to "5" and the "second" attribute is
set to "2", this means that within this pricing tier which spans 50,000 requests, the charge
is $2 per 10,000 requests.

name

(Mandatory, string) Name of rating plan. Example:

"name": "Default Rating Plan"

10.5.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter: {id, name}

400 Invalid JSON Object

409 Unique Constraint Violation : {id}

137

This page left intentionally blank

Chapter 11. system
The Admin API methods built around the system resource are for retrieving system information or performing
certain system maintenance tasks.

Methods associated with the system resource:

l "GET /system/audit" (page 139)

l "GET /system/bucketcount" (page 142)

l "GET /system/bucketusage" (page 145)

l "GET /system/bucketlist" (page 143)

l "GET /system/bytecount" (page 147)

l "GET /system/bytestiered" (page 149)

l "GET /system/dcnodelist" (page 150)

l "GET /system/groupbytecount" (page 150)

l "GET /system/groupobjectcount" (page 153)

l "GET /system/license" (page 155)

l "GET system/objectcount" (page 160)

l "GET /system/objectlockenabled" (page 162)

l "GET /system/token/challenge" (page 163)

l "GET /system/version" (page 164)

l "POST /system/processProtectionPolicy" (page 165)

l "POST /system/repairusercount" (page 166)

11.1. GET /system/audit

GET /system/audit Get summary counts for system

11.1.1. Syntax

GET /system/audit?[region=string]

There is no request payload.

11.1.2. Parameter Descriptions

region

(Optional, string) The service region for which to retrieve audit data. If the region is not specified in the
request, then the returned audit data will be for the whole system (all regions), combined.

139

Chapter 11. system

11.1.3. Usage Notes

Audit data is automatically updated within the system at the top of each hour. When you call the GET /sys-
tem/auditmethod you are retrieving the audit data from the most recent hourly update. If you want up-to-the-
minute counts -- rather than the counts as of the top of the last hour -- first call the method POST /system/audit,
with no request body. This updates the counts. Then, you can retrieve the freshly updated counts using the
GET /system/auditmethod. If you have a multi-region system and want to update each region's audit data, you
would need to submit a separate POST /system/audit request to one Admin host in each region. Again, this is
necessary only if you want audit data that is fresher than the automatic update done (in every region) at the top
of each hour.

11.1.4. Example Using cURL

The example below retrieves the summary counts for the system.

curl -X GET -k -u sysadmin:password https://localhost:19443/system/audit \

| python -mjson.tool

The response payload is a JSON-formatted AuditData object, which in this example is as follows.

{

"byteCount": 647687490,

"bytesInCount": 0,

"bytesOutCount": 0,

"licenseExpiration": 1590094491952,

"nodes": [

{

"name": "10.50.50.201"

},

{

"name": "10.50.50.202"

},

{

"name": "10.50.50.203"

}

],

"objectCount": 13,

"os": "Linux 3.10.0-957.1.3.el7.x86_64 amd64",

"tieredBytesCount": 0,

"timestamp": 1563724800000,

"userCount": 3

}

11.1.5. Response Element Descriptions

byteCount

(number) Net bytes of object data stored in the system. This measure excludes overhead from rep-
lication and erasure coding.

Example:

"byteCount": 647687490

bytesInCount

140

11.1. GET /system/audit

(number) This measure is not implemented currently and its value will always be "0".

Example:

"bytesInCount": 0

bytesOutCount

(number) This measure is not implemented currently and its value will always be "0".

Example:

"bytesOutCount": 0

licenseExpiration

(number) License expiration date-time, in UTC milliseconds.

Example:

"licenseExpiration": 1590094491952

nodes

(set) The list of nodes that comprise the HyperStore system, identified by IP address.

Example:

"nodes": [

{

"name": "10.50.50.201"

},

{

"name": "10.50.50.202"

},

{

"name": "10.50.50.203"

}

],

objectCount

(number) Number of objects currently stored in the system.

Example:

"objectCount": 13

os

(string) Operating system version being used by HyperStore hosts.

Example:

"os": "Linux 3.10.0-957.1.3.el7.x86_64 amd64"

tieredBytesCount

(number) Number of bytes of object data that has been auto-tiered to a remote destination or des-
tinations.

Example:

"tieredBytesCount": 0

141

Chapter 11. system

timestamp

(number) Date-time when audit data was automatically updated at the top of the most recently com-
pleted hour. In UTC milliseconds. Note that this timestamp is not affected by calling the POST /sys-
tem/auditmethod (this method updates the counts, but not the timestamp).

Example:

"timestamp": 1563724800000

userCount

(number) Number of active users in the system. This includes administrators as well as regular users.

Example:

"userCount": 3

11.1.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Region {region} is not valid

11.2. GET /system/bucketcount

GET /system/bucketcount Get aggregate count of buckets owned by a group's mem-
bers

11.2.1. Syntax

GET /system/bucketcount?groupId=string[®ion=string]

There is no request payload.

11.2.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to retrieve the count.

region

(Optional, string) The service region for which to retrieve the count. If you omit the region parameter, the
call response will be a total count across all regions combined. If your HyperStore system has only one
service region there is no reason to use this parameter.

142

11.3. GET /system/bucketlist

11.2.3. Usage Notes

This method returns an aggregate count of all buckets owned by a group's members. It does not break down
the count into individual users within the group.

11.2.4. Example Using cURL

The example below retrieves the count of buckets owned by users within the group "testgroup1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bucketcount?groupId=testgroup1'

The response payload is a text string, which in this example is as follows:

5

11.2.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or these method-specific
status codes:

Status Code Description

204 No content

400 Invalid region name

11.3. GET /system/bucketlist

GET /system/bucketlist Get list of buckets owned by each of a group's members

11.3.1. Syntax

GET /system/bucketlist?groupId=string

There is no request payload.

11.3.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to retrieve the list.

11.3.3. Example Using cURL

The example below retrieves the list of buckets owned by each user within the group "testgroup1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bucketlist?groupId=testgroup1'

| python -mjson.tool

The response payload in this example is as follows:

143

Chapter 11. system

[

{

"userId":"testuser1",

"buckets":[

{

"bucketName":"bucket1",

"createTime":"1554755537223",

"region": "losangeles",

"policyName": "rf3"

},

{

"bucketName":"bucket2",

"createTime":"1554755542554",

"region": "losangeles",

"policyName": "rf3"

},

{

"bucketName":"bucket3",

"createTime":"1554755548227",

"region": "losangeles",

"policyName": "rf3"

}

]

},

{

"userId":"testuser2",

"buckets":[

{

"bucketName":"testbucket4",

"createTime":"1554755580759",

"region": "boston",

"policyName": "ec42"

},

{

"bucketName":"testbucket5",

"createTime":"1554755587516",

"region": "boston",

"policyName": "ec42"

}

]

}

]

11.3.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

204 No content

400 Missing required parameter: {groudId}

144

11.4. GET /system/bucketusage

11.4. GET /system/bucketusage

GET /system/bucketusage Get stored byte and object counts for each bucket owned
by a group's members

11.4.1. Syntax
GET /system/bucketusage?groupId=string[&userId=string][&bucketName=string]

There is no request payload.

11.4.2. Parameter Descriptions
groupId

(Mandatory, string) The group for which to retrieve the current byte counts and object counts per bucket.
If the optional userId and bucketName parameters are not specified, then this API call returns the byte
count and object count for each bucket owned by each user in the group. The response data is
arranged by user, showing for each user the buckets owned by that user and the byte and object counts
for each of those buckets.

userId

(Optional, string) The user for whom to retrieve current byte counts and object counts per bucket. Use
this parameter if you want to retrieve data just for a single user rather than for all users in the group.

bucketName

(Optional, string) The bucket for which to retrieve the current byte count and object count. Use this para-
meter if you want to retrieve data just for a single bucket. If you specify the bucketName you must also
specify the groupId and userId to identify the bucket owner.

11.4.3. Usage Notes
By default, per-bucket byte and object counts are not tracked in the system and using the GET /sys-
tem/bucketusage call will not work. For instructions to enable this feature see "Per-Bucket Object and Byte
Counts" in the "Preparing the Usage Reporting Feature" section of the Cloudian HyperStore Administrator's
Guide.

After you've enabled this feature, you can use this API to retrieve the current counts of stored bytes and stored
objects for every bucket owned by every user in a specified group, with a single API call. Optionally you can
narrow the response to bucket usage information for a single user (by specifying a groupIdand a userId) or a
single bucket (by specifying a groupIdand a userIdand a bucketName).

Note With the groupId you must specify a single group. Specifying ALL as the groupIdis not supported.

145

Chapter 11. system

11.4.4. Example Using cURL
The example below retrieves the byte and object counts for all buckets owned by all users in the group named
"testgroup4".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bucketusage?groupId=testgroup4'

| python -mjson.tool

The response payload in this example is as follows:

[

{

"userId": "user1",

"buckets": [

{

"bucketName": "bucket1",

"byteCount": 600166,

"objectCount": 4,

"policyName": "rf3"

},

{

"bucketName": "bucket2",

"byteCount": 1201849,

"objectCount": 3,

"policyName": "rf3"

},

{

"bucketName": "bucket3",

"byteCount": 1282152,

"objectCount": 3,

"policyName": "rf3"

}

]

},

{

"userId": "user2",

"buckets": [

{

"bucketName": "mybucket",

"byteCount": 2912140,

"objectCount": 10,

"policyName": "rf3"

}

]

}

]

11.4.5. Response Codes
This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

146

11.5. GET /system/bytecount

Status Code Description

400 Missing required parameter: {groudId}

400 bucketName is specified and groupId or userId is empty

400 Group is not found or user is not found or bucket is not found

11.5. GET /system/bytecount

GET /system/bytecount Get stored byte count for the system, a group, a user, or a
bucket

11.5.1. Syntax

GET /system/bytecount?groupId=string&userId=string[&bucketName=string][®ion=string]

There is no request payload.

11.5.2. Parameter Descriptions

groupId, userId

(Mandatory, string) Use the groupId and userId parameters to specify whether you want to retrieve a
count for the whole system, for one whole group, or for one particular user:

l Whole system: groupId=ALL&userId=*

l One whole group: groupId=<groupId>&userId=* (example: groupId=Dev&userId=*)

l One particular user : groupId=<groupId>&userId=<userId> (example: groupId-
d=Dev&userId=Cody)

bucketName

(Optional, string) Use the bucketName parameter if you want to retrieve a count for one specific bucket.

Note To retrieve a count for a bucket you must also specify the group and the user who owns
the bucket -- for example groupId=Dev&userId=Cody&bucketName=bucket1

region

(Optional, string) The service region for which to retrieve the count. If you omit the region parameter
(and also omit the bucketName parameter), the call response will be a total count across all regions
combined. If your HyperStore system has only one service region there is no reason to use this para-
meter.

11.5.3. Usage Notes

The byte count is for "net" bytes (also known as "logical" bytes). Overhead due to replication or erasure coding
does not count toward this figure. For example, if a 1MiB object is replicated three times in the system (as part
of a replication storage policy), this counts as 1MiB toward the total byte count -- not as 3MiB.

147

Chapter 11. system

By default, per-bucket byte counts are not tracked in the system and using the bucketName parameter with
the GET /system/bytecount call will not work. For instructions to enable this feature see the "Usage Reporting
and Billing" section of the Cloudian HyperStore Administrator's Guide.

11.5.4. Examples Using cURL

The example below retrieves the byte count for the system as a whole (all users in all groups).

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bytecount?groupId=ALL&userId=*'

The response payload is the byte count in plain text, which in this example is as follows:

73836232

This next example retrieves the byte count for the "Pubs" group as a whole (all users in the Pubs group).

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bytecount?groupId=Pubs&userId=*'

The response payload is:

542348

This next example retrieves the byte count for the user "PubsUser1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bytecount?groupId=Pubs&userId=PubsUser1'

The response payload is:

66712

This next example retrieves the byte count for "bucket1", owned by the user "PubsUser1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bytecount?groupId=Pubs&userId=PubsUser1&bucketName=bucket1'

The response payload is:

32945

11.5.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

400 Group or user not found

400 Must specify group and user if bucket if specified

400 User cannot be "*" if bucket if specified

400 Bucket not found

400 Bucket is not in specified region

400 Invalid region

148

11.6. GET /system/bytestiered

11.6. GET /system/bytestiered

GET /system/bytestiered Get tiered byte count for the system, a group, or a user

11.6.1. Syntax

GET /system/bytestiered?groupId=string&userId=string

There is no request payload.

11.6.2. Parameter Descriptions

groupId, userId

(Mandatory, string) Use the groupId and userId parameters to specify whether you want to retrieve a
count for the whole system, for one whole group, or for one particular user:

l Whole system: groupId=ALL&userId=*

l One whole group: groupId=<groupId>&userId=* (example: groupId=Dev&userId=*)

l One particular user : groupId=<groupId>&userId=<userId> (example: groupId-
d=Dev&userId=Cody)

11.6.3. Usage Notes

The response is the total current volume of tiered storage in destination systems other than HyperStore. Data
auto-tiered from one region to another within a HyperStore system, or from one HyperStore system to another
HyperStore system, does not count toward this figure.

11.6.4. Example Using cURL

The example below retrieves the tiered volume for the system as a whole (all users in all groups).

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/bytestiered?groupId=ALL&userId=*'

The response payload is the tiered volume as a plain text string, which in this example is as follows:

"62G"

The tiered volume is expressed as "<n>G" (for number of GiBs) or "<n>T" (for number of TiBs) or "<n>P" (for
number of PBs). If the tiered volume is currently less than 1GiB then "0" is returned.

11.6.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

149

Chapter 11. system

11.7. GET /system/dcnodelist

GET /system/dcnodelist Get list of data centers and nodes

11.7.1. Syntax

GET /system/dcnodelist?[region=string]

There is no request payload.

11.7.2. Parameter Descriptions

region

(Optional, string) The service region for which to retrieve a list of data centers and nodes. If not supplied,
the default service region is assumed.

11.7.3. Usage Notes

This method returns a list of the data centers in a service region and the nodes within each data center.

11.7.4. Example Using cURL

The example below retrieves the list of data centers and nodes within the "north" service region.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/dcnodelist?region=north'

The response is formatted as follows:

{"DC1":["centos7-vm1","centos7-vm2","centos7-vm3"]}

In this example there is just one data center in the region, named "DC1". Note that in the response the nodes
within the data center are identified by hostname (not by IP address).

11.7.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Invalid parameter: region=region

11.8. GET /system/groupbytecount

GET /system/groupbytecount Get stored byte counts for each of a group's users

150

11.8. GET /system/groupbytecount

11.8.1. Syntax

GET /system/groupbytecount?groupId=string[&limit=integer][&offset=string]

There is no request payload.

11.8.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to retrieve the counts.

limit

(Optional, integer) For purposes of pagination, the optional limit parameter specifies the maximum num-
ber of users to return in one response. In the response the users are sorted alphanumerically and if
there are more than "limit" users in the group, then the number of users returned will be "limit plus 1" (for
example, 101 users if the limit is 100). The last, extra returned user — the "plus 1" — is an indicator that
there are more users than could be returned in the current response (given the specified "limit" value).
That last user’s ID can then be used as the "offset" value in a subsequent request that retrieves addi-
tional users.

Note If the offset user happens to be the last user in the entire set of users, the subsequent
query using the offset will return no users.

Defaults to 100.

offset

(Optional, string) The user ID with which to start the response list of users for the current request, sorted
alphanumerically. The optional "offset" parameter can be used for purposes of pagination within a large
result set that is being retrieved via multiple sequential requests. See the description of "limit" above for
more information.

If "offset" is not specified, the first user in the response list will be the alphanumerically first user from the
entire set of users in the group.

11.8.3. Usage Notes

The byte counts are for "net" bytes. Overhead due to replication or erasure coding does not count toward these
figures. For example, if a 1MiB object is replicated three times in the system (as part of a replication storage
policy), this counts as 1MiB toward the byte count -- not as 3MiB.

11.8.4. Example Using cURL

The example below retrieves the stored byte counts for each of the users in the "Pubs" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/groupbytecount?groupId=Pubs' | python -mjson.tool

The response payload is a JSON-formatted UserUsage object, which in this example is as follows. The group
has three users in it. If a user has multiple buckets, the user's byte count value is the sum total across all of the
user's buckets. For example the user "brady" has a total of 220508 stored bytes.

151

Chapter 11. system

[

{

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a",

"groupId": "Pubs",

"usageVal": 220508,

"userId": "brady"

},

{

"canonicalUserId": "9bdcdd44ce1f9266adb9f22a8313feb4",

"groupId": "Pubs",

"usageVal": 225365,

"userId": "gilmore"

},

{

"canonicalUserId": "9a00529cdfb6496a09c5105913b486ac",

"groupId": "Pubs",

"usageVal": 76744,

"userId": "gronk"

}

]

11.8.5. Response Element Descriptions

canonicaUserld

(Number) The user's system-generated canonical user ID. Example:

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a"

groupId

(Number) The ID of the group to which the user belongs. Example:

"groupId": "Pubs"

usageVal

(Number) The user's current stored byte count. If the user has multiple buckets, the count is a combined
total across all of the user's buckets.

Example:

"usageVal": 220508

userId

(String) The user's user ID. Example:

"userId": "brady"

11.8.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Missing required parameter: {groupId}

152

11.9. GET /system/groupobjectcount

Status Code Description

400 Limit should be greater than zero.

11.9. GET /system/groupobjectcount

GET /system/groupobjectcount Get stored object counts for each of a group's users

11.9.1. Syntax

GET /system/groupobjectcount?groupId=string[&limit=integer][&offset=string]

There is no request payload.

11.9.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to retrieve the counts.

limit

(Optional, integer) For purposes of pagination, the optional limit parameter specifies the maximum num-
ber of users to return in one response. In the response the users are sorted alphanumerically and if
there are more than "limit" users in the group, then the number of users returned will be "limit plus 1" (for
example, 101 users if the limit is 100). The last, extra returned user — the "plus 1" — is an indicator that
there are more users than could be returned in the current response (given the specified "limit" value).
That last user’s ID can then be used as the "offset" value in a subsequent request that retrieves addi-
tional users.

Note If the offset user happens to be the last user in the entire set of users, the subsequent
query using the offset will return no users.

Defaults to 100.

offset

(Optional, string) The user ID with which to start the response list of users for the current request, sorted
alphanumerically. The optional "offset" parameter can be used for purposes of pagination within a large
result set that is being retrieved via multiple sequential requests. See the description of "limit" above for
more information.

If "offset" is not specified, the first user in the response list will be the alphanumerically first user from the
entire set of users in the group.

11.9.3. Example Using cURL

The example below retrieves the stored object counts for each of the users in the "Pubs" group.

153

Chapter 11. system

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/groupobjectcount?groupId=Pubs' | python -mjson.tool

The response payload is a JSON-formatted UserUsage object, which in this example is as follows. The group
has three users in it. If a user has multiple buckets, the user's object count value is the sum total across all of
the user's buckets. For example the user "brady" has a total of 5 stored objects.

[

{

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a",

"groupId": "Pubs",

"usageVal": 5,

"userId": "brady"

},

{

"canonicalUserId": "9bdcdd44ce1f9266adb9f22a8313feb4",

"groupId": "Pubs",

"usageVal": 5,

"userId": "gilmore"

},

{

"canonicalUserId": "9a00529cdfb6496a09c5105913b486ac",

"groupId": "Pubs",

"usageVal": 2,

"userId": "gronk"

}

]

11.9.4. Response Element Descriptions

canonicaUserld

(Number) The user's system-generated canonical user ID. Example:

"canonicalUserId": "da870acdd136d60789fb5c761fef4a4a"

groupId

(Number) The ID of the group to which the user belongs. Example:

"groupId": "Pubs"

usageVal

(Number) Either the user's current stored byte count (in response to a GET /system/groupbytecount
request) or the user's current stored object count (in response to a GET /system/groupobjectcount
request). If the user has multiple buckets, the count is a combined total across all of the user's buckets.

Example:

"usageVal": 220508

userId

(String) The user's user ID. Example:

"userId": "brady"

154

11.10. GET /system/license

11.9.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameter: {groupId}

400 Limit should be greater than zero.

11.10. GET /system/license

GET /system/license Get HyperStore license terms

11.10.1. Syntax

GET /system/license

There is no request payload.

Note For background information about HyperStore licensing, see Licensing and Auditing.

11.10.2. Example Using cURL

The example below retrieves license data for the HyperStore system in which the call is submitted.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/system/license | python -mjson.tool

The response payload is a JSON-formatted LicenseData object, which in this example is as follows.

{

"appliances": null,

"enforcing": true,

"environment":null

"expiration": 1621915200000,

"gracePeriod": 0,

"hyperIQ": "90",

"issued": 1586751232344,

"maxNetStorage": "100T",

"maxRawStorage": null,

"maxTieredStorage": "-1"

"objectLockMode": "DISABLED",

"storageExceeded": false,

"storageMode": "NET",

"tieringExceeded": false,

"warnPeriod": 30

}

155

Chapter 11. system

11.10.3. Response Element Descriptions

appliances

(JSON object) Information about each HyperStore appliance in the cluster, if any. Information for each
appliance consists of:

l nodeId

l maxStorage -- This is the amount of raw storage capacity usage licensed for this individual appli-
ance machine.

l productName

If there are no HyperStore appliances in the cluster, the appliances attribute is set to 0.

Example:

"appliances": null

enforcing

(Boolean) If true, then the system will enforce the licensed storage maximum by rejecting S3 PUTs and
POSTs if the cluster stored volume reaches 110% of the licensed maximum. If this happens, then sup-
port for S3 PUTs and POSTs will resume again after the cluster stored volume is less than 100% of the
licensed maximum (either because data has been deleted, or because a new license with higher max-
imum cluster stored volume has been installed).

Also, if this attribute is set to true, then the system will enforce the licensed tiering maximum by no
longer auto-tiering data if the tiered volume reaches 110% of the licensed tiering maximum. If this hap-
pens, then support for auto-tiering will resume again after the tiered volume is less than 100% of the
licensed tiering maximum (either because tiered data has been deleted through HyperStore interfaces,
or because a new license with higher maximum tiered volume has been installed).

For more information on license enforcement see "Licensing and Auditing" in the Cloudian HyperStore
Administrator's Guide.

Example:

"enforcing": true

environment

(String) This will be null unless the system is a HyperStore Single-Node system for deployment in an
AWS Outposts environment. Examples:

"environment":null

"environment":"aws_outposts_singlenode"

expiration

(Number) License expiration date-time in UTC milliseconds. Example:

"expiration": 1621915200000

gracePeriod

(Number) After the license expiration date passes, the number of days until the HyperStore system is
automatically disabled. Example:

"gracePeriod": 0

156

11.10. GET /system/license

hyperIQ

(String) Your HyperStore license's level of support for Cloudian HyperIQ. Cloudian HyperIQ is a solution
for dynamic visualization and analysis of HyperStore system monitoring data and S3 service usage
data. HyperIQ is a separate product available from Cloudian that deploys as virtual appliance on
VMware or VirtualBox and integrates with your existing HyperStore system. For more information about
HyperIQ contact your Cloudian representative.

The hyperIQ attribute in the LicenseData object indicates what level of HyperIQ functionality will be avail-
able to you if you acquire and set up HyperIQ.

l basic -- HyperIQ dashboards for OS and service status monitoring are supported indefinitely.

l <number of days> -- HyperIQ dashboards for OS and service status monitoring are supported
indefinitely, and also an S3 analytics dashboard is supported for <number of days> duration
from the HyperStore license issuance. This HyperStore license type has "Enterprise HyperIQ"
support, with the distinction (as versus only the "basic" support level) being the availability of the
S3 analytics dashboard in HyperIQ.

Example

"hyperIQ": "90"

issued

(Number) License issuance date-time in UTC milliseconds. Example:

"issued": 1586751232344

maxNetStorage

(String) Applicable only if "storageMode" is "NET". If "storageMode" is "RAW" then this attribute will be
null.

Maximum allowed Net storage volume for your entire HyperStore system. This is expressed as "<n>G"
(for number of GiBs) or "<n>T" (for number of TiBs), or so on. For example, "100T" for one hundred TiBs.
This value does not use decimals and will be expressed in GiBs unless it's exact number of TiBs (that is,
an exact multiple of 1024 GiBs). For example, 1024 GiBs would be expressed as "1T" but 1030 GiBs
would be expressed as "1030G".

"Net" storage volume usage excludes overhead from replication or erasure coding. For example a
1GiB object protected by 3X replication counts as 1GiB toward the "maxNetStorage" limit — not as 3GiB.

Example:

"maxNetStorage": "100T"

maxRawStorage

(String) Applicable only if "storageMode" is "RAW". If "storageMode" is "NET" then this attribute will be
null.

If "storageMode" is "RAW", the "maxRawStorage" attribute indicates any additional raw storage licensed
for your cluster above and beyond the raw storage licensed to each of your appliance nodes (as indic-
ated by the "maxStorage" child attributes within the "appliances" attribute). Typically the "maxRawSt-
orage" attribute would have a non-zero value only if your cluster has a mix of appliance nodes and
software-only nodes. In such an environment, total licensed raw storage for the cluster is the sum of
each of the individual appliance machine raw storage licenses plus the "maxRawStorage".

157

Chapter 11. system

In a cluster consisting purely of appliance nodes, the "maxRawStorage" value would typically be 0. In
such an environment, total licensed raw storage for the cluster is the sum of each of the individual appli-
ance machine raw storage licenses.

When non-zero, "maxRawStorage" is expressed as "<n>G" (for number of GiBs) or "<n>T" (for number
of TiBs), or so on. For example, "100T" for one hundred TiBs. This value does not use decimals and will
be expressed in GiBs unless it's exact number of TiBs (that is, an exact multiple of 1024 GiBs). For
example, 1024 GiBs would be expressed as "1T" but 1030 GiBs would be expressed as "1030G".

Raw storage volume usage counts all stored data, including overhead from replication or erasure cod-
ing. For example a 1GiB object protected by 3X replication counts as 3GiB toward a raw storage license
limit. Also, stored metadata counts toward the limit as well.

Example:

"maxRawStorage": null

maxTieredStorage

(String) Maximum allowed volume of auto-tiered data stored in external systems other than HyperStore,
after having been transitioned to those systems from HyperStore. This is expressed as "<n>G" (for num-
ber of GiBs) or "<n>T" (for number of TiBs), or so on. For example, "100T" for one hundred TiBs. This
value does not use decimals and will be expressed in GiBs unless it's exact number of TiBs (that is, an
exact multiple of 1024 GiBs). For example, 1024 GiBs would be expressed as "1T" but 1030 GiBs would
be expressed as "1030G".

All auto-tiered data stored in any destination system other than HyperStore counts toward this limit.
Data auto-tiered from one of your HyperStore regions to another region, or from your HyperStore system
to an external HyperStore system, does not count toward this limit.

This attribute may have the value "-1" to indicate "unlimited" (i.e. the license places no limit on tiered
data volume).

Example:

"maxTieredStorage": "-1"

objectLockMode

(String) The license's type of support for the HyperStore Object Lock (WORM) feature:

l DISABLED -- Object Lock is not supported.

l COMPATIBLE -- Compatible Object Lock is supported.

l CERTIFIED -- Certified Object Lock is supported.

For more information about the Object Lock feature including description of the two types of licensed
support, see "Object Lock Feature Overview" in the Cloudian HyperStore Administrator's Guide.

Example:

"objectLockMode": "DISABLED"

storageExceeded

(Boolean) This flag sets to true if the cluster storage volume reaches 110% of licensed maximum stor-
age. It sets back to false when the cluster storage volume is less than 100% of licensed maximum stor-
age (either because data has been deleted, or because a new license with higher maximum storage
volume has been installed).

Example:

158

11.10. GET /system/license

"storageExceeded": false

storageMode

(String) The type of storage volume licensing applied by this license: either "NET" or "RAW". See
"maxNetStorage" and "maxRawStorage" for more detail. Example:

"storageMode": "NET"

tieringExceeded

(Boolean) This flag sets to true if the tiered storage volume reaches 110% of the licensed maximum
tiered volume. It sets back to false when the tiered storage volume is less than 100% of the licensed
maximum tiered volume (either because tiered data has been deleted through HyperStore interfaces, or
because a new license with higher maximum tiered volume has been installed).

Example:

"tieringExceeded": false

warnPeriod

(Number) Starting this many days before the license expiration date, an expiration warning message
will display at the top of the Cloudian Management Console. Example:

"warnPeriod": 30

11.10.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

11.10.5. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianSystemLicense

l Parameters: Same as for GET /system/license (no parameters)

l Response body: Same response data as for GET /system/license except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user can use this method

o HyperStore group admin user cannot use this method

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianSystemLicense permission by
policy, and subject to the same restriction as the parent HyperStore user

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianSystemLicense

<request headers including authorization info>

159

Chapter 11. system

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianSystemLicenseResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<LicenseData>

<expiration>2020-05-21T13:54:51.952-07:00</expiration>

etc...

...

...

</LicenseData>

</GetCloudianSystemLicenseResponse>

11.11. GET system/objectcount

GET system/objectcount Get stored object count for the system, a group, a user, or
a bucket

11.11.1. Syntax

GET /system/objectcount?groupId=string&userId=string[&bucketName=string][®ion=string]

There is no request payload.

11.11.2. Parameter Descriptions

groupId, userId

(Mandatory, string) Use the groupId and userId parameters to specify whether you want to retrieve a
count for the whole system, for one whole group, or for one particular user:

l Whole system: groupId=ALL&userId=*

l One whole group: groupId=<groupId>&userId=* (example: groupId=Dev&userId=*)

l One particular user : groupId=<groupId>&userId=<userId> (example: groupId-
d=Dev&userId=Cody)

bucketName

(Optional, string) Use the bucketName parameter if you want to retrieve a count for one specific bucket.

Note To retrieve a count for a bucket you must also specify the group and the user who owns
the bucket -- for example groupId=Dev&userId=Cody&bucketName=bucket1

region

(Optional, string) The service region for which to retrieve the count. If you omit the region parameter

160

11.11. GET system/objectcount

(and also omit the bucketName parameter), the call response will be a total count across all regions
combined. If your HyperStore system has only one service region there is no reason to use this para-
meter.

11.11.3. Usage Notes

By default, per-bucket object counts are not tracked in the system and using the bucketName parameter
with the GET /system/objectcount call will not work. For instructions to enable this feature see the "Usage
Reporting and Billing" section in the Cloudian HyperStore Administrator's Guide.

11.11.4. Examples Using cURL

The example below retrieves the object count for the system as a whole (all users in all groups).

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/objectcount?groupId=ALL&userId=*'

The response payload is the object count in plain text, which in this example is as follows:

1023

This next example retrieves the object count for the "Pubs" group as a whole (all users in the Pubs group).

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/objectcount?groupId=Pubs&userId=*'

The response payload is:

215

This next example retrieves the object count for the user "PubsUser1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/objectcount?groupId=Pubs&userId=PubsUser1'

The response payload is:

54

This next example retrieves the object count for the bucket "bucket1", which is owned by the user "PubsUser1".

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/objectcount?groupId=Pubs&userId=PubsUser1&bucketName=bucket1'

The response payload is:

31

11.11.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Missing required parameters: {groupId}, {userId}

400 Group or user not found

400 Must specify group and user if bucket if specified

161

Chapter 11. system

Status Code Description

400 User cannot be "*" if bucket if specified

400 Bucket not found

400 Bucket is not in specified region

400 Invalid region

11.12. GET /system/objectlockenabled

GET /system/objectlockenabled Get Object Lock enabled/disabled status

11.12.1. Syntax

GET /system/objectlockenabled

There is no request payload.

11.12.2. Usage Notes

The response to this call will be:

l true if the system is in either of these conditions:

l Your HyperStore license supports the "Compatible" Object Lock type.

OR

l Your HyperStore license supports the "Certified" Object Lock type and you have both enabled
the HyperStore Shell and disabled root password access to HyperStore nodes (for instructions
see the HyperStore Shell section of the Cloudian HyperStore Administrator's Guide). (Note
that if your license supports the "Certified" type of Object Lock, then Object Lock is not enabled
in the system until you have enabled the HyperStore Shell and disabled root password access
to HyperStore nodes.)

l false if the system is in either of these conditions:

l Your HyperStore license does not support the Object Lock feature

OR

l Your HyperStore license supports the "Certified" Object Lock type but you have not yet enabled
the HyperStore Shell and disabled root password access to HyperStore nodes.

11.12.3. Example Using cURL

The example below retrieves the Object Lock feature status.

curl -X GET -k -u sysadmin:password https://localhost:19443/system/objectlockenabled

The response is the Object Lock feature status in plain text, which in this example is as follows.

false

162

11.13. GET /system/token/challenge

11.13. GET /system/token/challenge

GET /system/token/challenge Get token challenge to provide to Cloudian Support

11.13.1. Syntax

GET /system/token/challenge?action=purge¶ms=bucketName:string

There is no request payload.

11.13.2. Parameter Descriptions

action

(Mandatory, string) Action for which a token is being generated. Currently the only supported action is
purge.

bucketName

(Mandatory, string) Name of the bucket that you want to purge of data.

11.13.3. Usage Notes

Using this Admin API call to generate a token challenge is one step in the procedure for purging data from an
Object Locked bucket, if your system is licensed for the "Compatible" Object Lock type. After you generate the
token challenge you provide it to Cloudian Support, by opening a support case. For the full procedure see "Pur-
ging an Object Locked Bucket" (page 54).

Note If your system is licensed for the "Certified" Object Lock type you cannot purge data from an
Object Locked bucket, and there is no reason to use the GET /system/token/challenge call.

11.13.4. Example Using cURL

The example below generates a token challenge for purging data from an Object Locked bucket named
pubs1.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/system/token/challenge?action=purge¶ms=bucketName:pubs1'

The response is the token challenge, which in this example is as follows.

A.fa868eff0219b2ecdf58d2aff6fa355584b090a2a6ff4073d28a2245bbc23f09

11.13.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missed required parameter: action, bucketName

163

Chapter 11. system

Status Code Description

400 Unsupported 'action' value

403 Token challenge is supported only for licensed "Compatible" Object Lock type

11.14. GET /system/version

GET /system/version Get HyperStore system version

11.14.1. Syntax

GET /system/version

There is no request payload.

11.14.2. Example Using cURL

The example below retrieves the HyperStore system version.

curl -X GET -k -u sysadmin:password https://localhost:19443/system/version

The response payload is the system version information in plain text, which in this example is as follows.

7.4 Compiled: 2021-11-11 16:30

11.14.3. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

11.14.4. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianSystemVersion

l Parameters: Same as for GET /system/version (no parameters)

l Response body: Same response data as for GET /system/version except the data is formatted in XML
rather than JSON

l Role-based restrictions:

o HyperStore system admin user, group admin user, and regular user can all use this method

o IAM user can only use this method if granted admin:GetCloudianSystemVersion permission by
policy

l Sample request and response:

REQUEST

http://localhost:16080/?Action=GetCloudianSystemVersion

164

11.15. POST /system/processProtectionPolicy

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianSystemVersionResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<String>

7.1 Compiled: 2018-08-16 16:32

</String>

</GetSystemVersionResponse>

11.15. POST /system/processProtectionPolicy

POST /system/processProtectionPolicy Process pending storage policy deletion
or creation jobs

11.15.1. Syntax

POST /system/processProtectionPolicy

There is no request payload.

11.15.2. Usage Notes

This method processes any pending storage policy deletion jobs. System operators can initiate the deletion of
an unused storage policy (a storage policy that is not assigned to any buckets) through the CMC. This operator
action marks the policy with a "DELETED" flag and makes it immediately unavailable to service users.
However, the full process of deleting the storage policy from the system is not completed until the POST /sys-
tem/processProtectionPolicy method is run.

This method also processes any pending storage policy creation jobs, in the event that multiple storage policy
creation requests have been initiated in a short amount of time -- which can result in queueing of storage policy
creation jobs. More typically, storage policy creation completes shortly after the creation is initiated through the
CMC.

Note This method is invoked once a day by a HyperStore cron job. For more information see the "Cron
Jobs and Automated System Maintenance" section of the Cloudian HyperStore Administrator's
Guide.

11.15.3. Example Using cURL

The example below triggers the processing of any pending storage policy deletion or creation jobs.

165

Chapter 11. system

curl -X POST -k -u sysadmin:password \

https://localhost:19443/system/processProtectionPolicy

11.15.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

11.16. POST /system/repairusercount

POST /system/repairusercount Reconcile user counts in Redis and Cassandra

11.16.1. Syntax

POST /system/repairusercount

There is no request payload.

11.16.2. Usage Notes

Use this method if you have reason to suspect that user counts in your audit data are inaccurate. This method
will synchronize the user counts in Redis (which are used in audit data) to the metadata in the Cassandra User-
Info table.

11.16.3. Example Using cURL

The example below syncs the user counts in Redis with the Cassandra metadata.

curl -X POST -k -u sysadmin:password https://localhost:19443/system/repairusercount

11.16.4. Response Codes

This method will return one of one of the "Common Response Status Codes" (page 13).

166

Chapter 12. tiering
The Admin API methods built around the tiering resource are for managing account credentials to use for
accessing auto-tiering destination systems. You can post tiering credentials to associate with specific Hyper-
Store source buckets, and the system will securely store the credentials and use them when implementing
auto-tiering for those buckets. For S3-compliant tiering destinations you also have the option of posting a sys-
tem default tiering credential, which can be made available for all bucket owners to use for auto-tiering to a sys-
tem default tiering destination.

Note
* These Admin API methods are not applicable to a HyperStore Single-Node system.
* Having a system default tiering credential is only supported for S3-compliant tiering destinations -- not
for Azure or Spectra.

Methods associated with the tiering resource:

l "DELETE /tiering/credentials" (page 167)

l "DELETE /tiering/azure/credentials" (page 168)

l "DELETE /tiering/spectra/credentials" (page 168)

l "GET /tiering/credentials" (page 169)

l "GET /tiering/credentials/src" (page 170)

l "GET /tiering/azure/credentials" (page 171)

l "GET /tiering/spectra/credentials" (page 172)

l "POST /tiering/credentials" (page 172)

l "POST /tiering/azure/credentials" (page 174)

l "POST /tiering/spectra/credentials" (page 175)

12.1. DELETE /tiering/credentials

DELETE /tiering/credentials Delete a tiering credential for Amazon, Google, or
other S3-compliant destination

12.1.1. Syntax

DELETE /tiering/credentials[?bucketName=string]

There is no request payload.

12.1.2. Parameter Descriptions

bucketName

(Optional, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system. If the bucketName parameter is omitted then the request applies to the system
default auto-tiering credential.

167

Chapter 12. tiering

12.1.3. Example Using cURL

The example below deletes the S3 auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/tiering/credentials?bucketName=bucket1

12.1.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

12.2. DELETE /tiering/azure/credentials

DELETE /tiering/azure/credentials Delete a tiering credential for Azure

12.2.1. Syntax

DELETE /tiering/azure/credentials?bucketName=string

There is no request payload.

12.2.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

12.2.3. Example Using cURL

The example below deletes the Azure auto-tiering credential currently associated with a HyperStore source
bucket named "bucket2".

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/tiering/azure/credentials?bucketName=bucket2

12.2.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

12.3. DELETE /tiering/spectra/credentials

DELETE /tiering/spectra/credentials Delete a tiering credential for Spectra

168

12.4. GET /tiering/credentials

12.3.1. Syntax

DELETE /tiering/spectra/credentials?bucketName=string

There is no request payload.

12.3.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

12.3.3. Example Using cURL

The example below deletes the Spectra auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/tiering/spectra/credentials?bucketName=bucket1

12.3.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

12.4. GET /tiering/credentials

GET /tiering/credentials Get a tiering credential for Amazon, Google, or other S3-
compliant destination

12.4.1. Syntax

GET /tiering/credentials[?bucketName=string]

There is no request payload.

12.4.2. Parameter Descriptions

bucketName

(Optional, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system. If the bucketName parameter is omitted then the request applies to the system
default auto-tiering credential.

12.4.3. Example Using cURL

The example below retrieves the S3 auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

169

Chapter 12. tiering

curl -X GET -k -u sysadmin:password \

https://localhost:19443/tiering/credentials?bucketName=bucket1

The response payload is the S3 access key in plain text, which in this example is as follows. The secret key is
not returned.

00cc33c4b1ef9f50282a

12.4.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 No Tiering Credentials found.

12.5. GET /tiering/credentials/src

GET /tiering/credentials/src Check whether a bucket uses a bucket-specific or sys-
tem default tiering credential

12.5.1. Syntax

GET /tiering/credentials/src[?bucketName=string]

There is no request payload.

12.5.2. Parameter Descriptions

bucketName

(Optional, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

12.5.3. Usage Notes

For buckets that auto-tier to Amazon, Google, or other S3-compliant destinations, you can use this method to
check whether the bucket is using a bucket-specific tiering credential or the system default tiering credential (or
no credential, if the bucket has not yet been configured for auto-tiering). You can omit the "bucketName" para-
meter if you just want to check whether or not the system default tiering credential has been created for the sys-
tem. The method responds with a plain text string -- either "BUCKET" (bucket-specific credential), "SYSTEM"
(system default credential), or NONE (no credential has been set for the system yet).

Note This method is not supported for buckets that tier to Azure or Spectra.

170

12.6. GET /tiering/azure/credentials

12.5.4. Example Using cURL

The example below checks the S3 auto-tiering credential type for a HyperStore source bucket named "buck-
et1".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/tiering/credentials/src?bucketName=bucket1

In this example the response payload is BUCKET, indicating that "bucket1" uses a bucket-specific tiering cre-
dential in its S3 auto-tiering configuration.

BUCKET

12.5.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

12.6. GET /tiering/azure/credentials

GET /tiering/azure/credentials Get a tiering credential for Azure

12.6.1. Syntax

GET /tiering/azure/credentials?bucketName=string

There is no request payload.

12.6.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

12.6.3. Example Using cURL

The example below retrieves the Azure auto-tiering credential currently associated with a HyperStore source
bucket named "bucket2".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/tiering/azure/credentials?bucketName=bucket1

The response payload is the Azure account name and account key in plain text with comma-separation, which
in this example is as follows.

123456,Oy1wMUklsF8l331LIGY5RlVqa8Rg+iWT6zEFt6I1

12.6.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

171

Chapter 12. tiering

Status Code Description

204 No Tiering Credentials found.

12.7. GET /tiering/spectra/credentials

GET /tiering/spectra/credentials Get a tiering credential for Spectra

12.7.1. Syntax

GET /tiering/spectra/credentials?bucketName=string

There is no request payload.

12.7.2. Parameter Descriptions

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

12.7.3. Example Using cURL

The example below retrieves the Spectra auto-tiering credential currently associated with a HyperStore source
bucket named "bucket1".

curl -X GET -k -u sysadmin:password \

https://localhost:19443/tiering/spectra/credentials?bucketName=bucket1

The response payload is the access key in plain text, which in this example is as follows. The secret key is not
returned.

00d5dc27224f9d529257

12.7.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 No Tiering Credentials found.

12.8. POST /tiering/credentials

POST /tiering/credentials Post a tiering credential for Amazon, Google, or other
S3-compliant destination

172

12.8. POST /tiering/credentials

12.8.1. Syntax

POST /tiering/credentials?accessKey=urlencoded-string&secretKey=urlencoded-string

[&bucketName=string]

There is no request payload.

12.8.2. Parameter Descriptions

accessKey

(Mandatory, string) Access key for the tiering destination account. Must be URL-encoded if the key
includes non-ASCII characters.

secretKey

(Mandatory, string) Secret key for the tiering destination account. Must be URL-encoded if the key
includes non-ASCII characters.

bucketName

(Optional, string) Name of the HyperStore source bucket that will use the credential for auto-tiering to
a destination system. If the bucketName parameter is omitted then the request creates the system
default auto-tiering credential.

12.8.3. Usage Notes

If an access key or secret key includes a non-ASCII character and you do not URL-encode the key, the API
server will return a 403 error.

12.8.4. Example Using cURL

The example below posts S3 auto-tiering credentials for a HyperStore source bucket named "b1".

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/tiering/credentials?accessKey=00cc&secretKey=YuaO&bucketName=b1'

When implementing auto-tiering from this source bucket to an S3-compatible destination system (as configured
by the bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the access key and secret key are truncated so that the 'https://...' segment
can be shown on one line.

12.8.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accessKey, secretKey}

173

Chapter 12. tiering

12.9. POST /tiering/azure/credentials

POST /tiering/azure/credentials Post a tiering credential for Azure

12.9.1. Syntax

POST /tiering/azure/credentials?accountName=urlencoded-string&accountKey=urlencoded-

string&bucketName=string

There is no request payload.

12.9.2. Parameter Descriptions

accountName

(Mandatory, string) Name of the Azure tiering destination account. Must be URL-encoded if the name
includes non-ASCII characters.

accountKey

(Mandatory, string) Account key for the Azure tiering destination account. Must be URL-encoded if the
key includes non-ASCII characters.

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

Note Having a system default tiering credential is not supported not for Azure. Each bucket
must have its own credentials.

12.9.3. Usage Notes

If an account name or account key includes a non-alphanumeric character and you do not URL-encode the
key, the API server will return a 403 error.

12.9.4. Example Using cURL

The example below posts Azure auto-tiering credentials for a HyperStore source bucket named "b2".

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/tiering/azure/credentials?accountName=123&accountKey=Oy1&bucketName=b2'

When implementing auto-tiering from this source bucket to an Azure destination system (as configured by the
bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the account name and key are truncated so that the 'https://...' segment can
be shown on one line.

174

12.10. POST /tiering/spectra/credentials

12.9.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accountName, accountKey}

12.10. POST /tiering/spectra/credentials

POST /tiering/spectra/credentials Post a tiering credential for Spectra

12.10.1. Syntax

POST /tiering/spectra/credentials?accessKey=urlencoded-string&secretKey=urlencoded-

string&bucketName=string

There is no request payload.

12.10.2. Parameter Descriptions

accessKey

(Mandatory, string) Access key for the tiering destination account. Must be URL-encoded if the key
includes non-ASCII characters.

secretKey

(Mandatory, string) Secret key for the tiering destination account. Must be URL-encoded if the key
includes non-ASCII characters.

bucketName

(Mandatory, string) Name of the HyperStore source bucket that uses the credential for auto-tiering to a
destination system.

Note Having a system default tiering credential is not supported not for Spectra. Each bucket
must have its own credentials.

12.10.3. Usage Notes

If an access key or secret key includes a non-ASCII character and you do not URL-encode the key, the API
server will return a 403 error.

12.10.4. Example Using cURL

The example below posts Spectra auto-tiering credentials for a HyperStore source bucket named "b3".

175

Chapter 12. tiering

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/tiering/spectra/credentials?accessKey=00d5&secretKey=PxvA&bucketName=b3'

When implementing auto-tiering from this source bucket to a Spectra destination system (as configured by the
bucket lifecycle configuration), the HyperStore system will use this credential.

Note In the example above, the access key and secret key are truncated so that the 'https://...' segment
can be shown on one line.

12.10.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Bucket does not exist.

400 Missing required attributes : {accessKey, secretKey}

176

Chapter 13. usage
The Admin API methods built around the usage resource are for managing HyperStore usage reporting. This
includes support for retrieving service usage data for specified users, groups, or buckets. There are also meth-
ods for aggregating usage data and ensuring its accuracy — many of these methods are invoked regularly by
HyperStore system cron jobs.

For an overview of the HyperStore usage reporting feature, see the "Usage Reporting and Billing" section in
the Cloudian HyperStore Administrator's Guide.

Note Cloudian HyperIQ is a product that provides advanced analytics and visualization of HyperStore
S3 Service usage by users and groups, as well as HyperStore system monitoring and alerting. For
more information about HyperIQ contact your Cloudian representative.

Methods associated with the usage resource:

l "DELETE /usage" (page 177)

l "GET /usage" (page 179)

l "POST /usage/bucket" (page 195)

l "POST /usage/repair" (page 197)

l "POST /usage/repair/bucket" (page 198)

l "POST /usage/repair/dirtyusers" (page 199)

l "POST /usage/repair/user" (page 201)

l "POST /usage/rollup" (page 202)

l "POST /usage/storage" (page 203)

l "POST /usage/storageall" (page 204)

13.1. DELETE /usage

DELETE /usage Delete usage data

13.1.1. Syntax

DELETE /usage?granularity=enum&startTime=string[&unitCount=integer]

There is no request payload.

13.1.2. Parameter Descriptions

granularity

(Mandatory, enum) The time period granularity of the usage data to delete. Supported values are:

l hour—Hourly rollup data

l day—Daily rollup data

177

Chapter 13. usage

l month—Monthly rollup data

l raw—Raw transactional data (not rolled up).

startTime

(Mandatory, string)

The start time in GMT. The format depends on the granularity of the usage data that you are generating
or deleting:

l For hourly rollup data use format yyyyMMddHH. The start time will be the start of the hour that
you specify.

l For daily rollup data use format yyyyMMdd. The start time will be the start of the day that you spe-
cify.

l For monthly rollup data use format yyyyMM. The start time will be the start of the month that you
specify.

l For raw data use format yyyyMMddHHmm. The start time will be the start of the minute that you
specify.

unitCount

(Optional, integer) The number of units of the specified "granularity" to delete. Supported range is
[1,100].

For example, with "granularity" = hour and "unitCount" = 24, a DELETE /usage operation will delete 24
hours worth of hourly rollup data, starting from your specified "startTime". In the case of "granularity" =
raw, a DELETE /usage operation will delete "unitCount" minutes worth of raw transactional data -- for
example 10 minutes worth of raw transactional data if "unitCount" = 10.

Defaults to 1 unit if not specified.

13.1.3. Usage Notes

This method deletes service usage data from the Reports keyspace in Cassandra. Separate data exists for the
raw, hourly roll-up, daily roll-up, and monthly roll-up levels. Note that when you delete usage data, usage data
for all groups and users will be deleted for your specified granularity and time period.

Apart from using this API method, usage data deletion is also managed by configurable retention periods after
which the system automatically deletes the data. See "Setting Usage Data Retention Periods" in the "Usage
Reporting" section of the Cloudian HyperStore Administrator's Guide.

IMPORTANT ! The HyperStore system calculates monthly bills for service users by aggregating hourly
roll-up data. Once hourly data is deleted, you will not be able to generate bills for the service period
covered by that data.

Note If you have enabled the per-bucket usage data feature, this API method does not delete per-
bucket usage data. It deletes only per-group and per-user usage data. Deletion of per-bucket usage
data is managed exclusively by the configuration retention periods.

178

13.2. GET /usage

13.1.4. Example Using cURL

The example below deletes daily roll-up usage data from the day of May 1st, 2017.

curl -X DELETE -k -u sysadmin:password \

'https://localhost:19443/usage?granularity=day&startTime=20170501&unitCount=1'

13.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

13.2. GET /usage

GET /usage Get usage data for group, user, or bucket

13.2.1. Syntax

GET /usage?[id=string|canonicalUserId=string|bucket=string]&operation=enum&startTime=string

&endTime=string&granularity=enum&reversed=bool[&limit=integer][&pageSize=integer]

[&offset=string][®ion=string][®ionOffset=string]

There is no request payload.

13.2.2. Parameter Descriptions

id

(Optional, string) The identifier of a user or group for which to retrieve usage data, in format
"<groupId>|<userId>" (for example "Dev|dstone", where Dev is the group ID and dstone is the user ID).
To retrieve usage data for a whole group rather than a single user, use "<groupId>|*" (for example
"Dev|*").

Do not use the "id" parameter for users who have been deleted from the system. For deleted users, use
the "canonicalUserId" parameter described below.

With a GET /usage request you must use either "id" or "canonicalUserId" or "bucket". Do not use more
than one of these query parameters.

canonicalUserId

(Optional, string) The system-generated canonical ID of a user for which to retrieve usage data. Use this
parameter if you want to retrieve usage data for a user who has been deleted from the system. If you
don’t know the user’s canonical ID, you can obtain it by using the GET /user/listmethod (this method
can retrieve user profile information — including canonical ID — for all deleted users within a specified
group).

179

Chapter 13. usage

With a GET /usage request you must use either "id" or "canonicalUserId" or "bucket". Do not use more
than one of these query parameters.

bucket

(Optional, string): The bucket name. Use this parameter if you want to retrieve usage data for a specific
bucket (rather than for a user or group). With a GET /usage request you must use either "id" or "canon-
icalUserId" or "bucket". Do not use more than one of these query parameters. Note that bucket names
are globally unique within a HyperStore system, so specifying a bucket name is sufficient to uniquely
identify a bucket.

Note With the exception of the POST /usage/repair/bucketmethod, bucket usage statistics are
disabled by default. For information on enabling this feature see "Enabling Non-Default Usage
Reporting Features" in the "Usage Reporting and Billing" section of the Cloudian HyperStore
Administrator's Guide.

operation

(Mandatory, enum) The type of service usage data to retrieve. Supported values are:

l SB—Number of stored bytes

l SO—Number of stored objects

l HG—Number of S3 HTTP GET requests (includes HEADs also). The returned usage data also
includes information about bytes downloaded.

l HP—Number of S3 HTTP PUT requests (includes POSTs also). The returned usage data also
includes information about bytes uploaded.

l HD—Number of S3 HTTP DELETE requests

Note Usage tracking and reporting for the HG, HP, and HD metrics is disabled by default.
For information on enabling these metrics see "Enabling Non-Default Usage Reporting
Features" in the "Usage Reporting and Billing" section of the Cloudian HyperStore
Administrator's Guide.

l BI— For bucket usage only, the number of data transfer bytes IN (bytes of data uploaded).

l BO— For bucket usage only, the number of data transfer bytes OUT (bytes of data downloaded).

Note The BI and BO operation types are supported only for GET /usage?bucket requests.
For user and group level usage statistics, the inbound and outbound data transfer size
information is included within the HP and HG operation type usage data.

l TB— For bucket usage only, the total bytes count for the bucket.

l TO— For bucket usage only, the total objects count for the bucket.

Note The TB and TO operation types are supported only for GET /usage?bucket
requests. The TB and TO counts for a bucket for a specified time period (from startTime to
endTime) will exist only if you previously executed the POST /usage/repair/bucket
method during that time period. That method generates the TB and TO counts for the
bucket which the system then stores along with a timestamp indicating when the count

180

13.2. GET /usage

was generated.

For GET /usage?bucket requests the SB and SO operation types are also supported, but
these will return the change in the stored bytes and stored object counts during the spe-
cified time interval -- for example, the total increase in a bucket's stored bytes total during
a specified day, rather than the total number of bytes in the bucket on that day. For the lat-
ter you would use the TB operation type.

startTime

(Mandatory, string)

The start time in GMT.

With a GET /usage request this is the start time of the interval for which to retrieve usage data. Format is
yyyyMMddHHmm.

Note For retrieving bucket usage data, the start time's "mm" -- the minutes -- must be 00.

endTime

(Mandatory, string) The end time in GMT of the interval for which to retrieve usage data. Format is
yyyyMMddHHmm.

Note For retrieving bucket usage data, the end time's "mm" -- the minutes -- must be 00.

granularity

(Mandatory, enum) The time period granularity of the usage data to retrieve. Supported values are:

l hour—Hourly rollup data

l day—Daily rollup data

l month—Monthly rollup data

l raw—Raw transactional data (not rolled up).

Note For a GET with granularity "raw", the interval between "startTime" and "endTime"
must not exceed 24 hours. If the interval is larger than this, a 400 Bad Request response
will be returned.

reversed

(Optional, boolean) If this is set to "false", the retrieved usage data results will be listed in chronological
order. If this is set to "true", results will be listed in reverse chronological order. Defaults to "false" if not
specified.

Note This parameter is not supported if you are retrieving bucket usage data.

limit

(Optional, integer) The maximum number of results to return — that is, the maximum number of

181

Chapter 13. usage

<UsageData> objects to return in the response body — if pagination is not used (if no "pageSize" value
is specified).

Defaults to 10,000 if not specified.

pageSize

(Optional, integer) For pagination, the maximum number of results to return per request. If a "pageSize"
is specified, this supersedes the "limit" value.

Defaults to 0 if not specified.

Note This parameter is not supported if you are retrieving bucket usage data.

offset

(Optional, integer) If you use the "pageSize" parameter in support of paginating a large result set, in the
response the system will return one additional result beyond your specified "pageSize" value (for
example, if you specify "pageSize=25", the system will return 26 results). From the extra result (listed
last in the response body), use the result’s timestamp as the "offset" parameter value in your next
request. That result will then be the first of the results returned for that request.

For each request you submit, the last of the returned results will be an extra result from which you can
use the timestamp as the "offset" value for the next request. If there is no extra result in the response,
that indicates that the result set has been exhausted.

Defaults to 0 if not specified.

Note This parameter is not supported if you are retrieving bucket usage data.

region

(Optional, string) The region for which to retrieve usage data. To retrieve usage data for all regions, spe-
cify the string "ALL". If no "region" value is specified, the default region is assumed. This parameter is
not supported if the "bucket" parameter is used (for retrieving data for a specified bucket).

Note GET /usage requests for user or group level statistics should be submitted only to the
Admin Service in the default region. Use the "region" query parameter to specify the region for
which you want to retrieve usage data.

GET /usage requests for bucket usage data can be submitted to the Admin Service any region,
and the results will be from that region. Do not specify the "region" parameter for bucket usage
data requests.

regionOffset

(Optional, string) If you use a "region" value of "ALL", use the "regionOffset" parameter to specify the
region name of your local region. This helps with pagination of the result set.

Note This parameter is not supported if you are retrieving bucket usage data.

182

13.2. GET /usage

13.2.3. Usage Notes

The GET /usage?bucket=string... option is supported only if bucket usage statistics are enabled in the system.
Bucket usage statistics are disabled by default. For information on enabling this feature see "Enabling Non-
Default Usage Reporting Features" in the "Usage Reporting and Billing" section of the Cloudian HyperStore
Administrator's Guide.

13.2.4. Examples Using cURL

The first example below retrieves the monthly stored bytes usage data for the "QA" group, from July 2017.

curl -X GET -k -u sysadmin:password \
'https://
localhost
:19443/usage?id=
QA|*&operation=SB&startTime=201707010000&endTime=201708010000&granularity=month' \
| python -mjson.tool

The response payload is a JSON-formatted list of UsageData objects, which in this example is as follows. Note
that in this case we are retrieving monthly roll-up data from a time interval that spans just one month, so here
there is just one UsageData object in the list.

[

{

"averageValue": "107956",

"bucket": null,

"count": "744",

"groupId": "QA",

"ip": "",

"maxValue": "305443",

"operation": "SB",

"region": "taoyuan",

"timestamp": "1498867200000",

"uri": "",

"userId": "*",

"value": "80319535",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

}

]

The next example below retrieves the total bytes count for a bucket named "bucket1" as of the specified hour
interval. Note that to support retrieving the total bytes (TB) count or total objects (TO) count for a bucket as of a
specified time interval, the POST /usage/repair/bucket method must have been executed for that bucket some-
time during that time interval (since that method generates the TB and TO counts). If that method has not been
executed for a bucket during a given time interval -- such as a particular hour or day -- then you cannot sub-
sequently retrieve a TB or TO count for that bucket from that interval.

curl -X GET -k -u sysadmin:password \

'

https://

183

Chapter 13. usage

localhost
:19443/usage?bucket=
bucket1&operation=TB&startTime=201712201400&endTime=201712201500&granularity=raw' \
| python -mjson.tool

The response payload is a JSON-formatted list of UsageData objects, which in this example is as follows.

[

{

"averageValue": "4242572",

"bucket": "bucket1",

"count": "0",

"groupId": null,

"ip": null,

"maxValue": "0",

"operation": "TB",

"policyId": "880e7d065225009b481ff24ae8d893ce",

"region": null,

"timestamp": "1513781460000",

"uri": null,

"userId": null,

"value": "4242572",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

}

]

Note If the POST /usage/repair/bucketmethod had been called multiple times during the time period
specified in the GET /usage?bucket request, and the requested granularity is "raw", then multiple
UsageData objects would be returned in the response, each with a TB value and each with a
timestamp indicating when the POST /usage/repair/bucket call had generated that TB value. By con-
trast, if the requested granularity is a roll-up period such as "hour", then only most recent TB value gen-
erated during that roll-up period would be returned.

For example, suppose that you have been executing the POST /usage/repair/bucket call on a particular
bucket at 11AM and 11PM every day. Subsequently, if the start and end times in a GET /usage?bucket
request span one week and the requested granularity is "day", the response will return one UsageData
object for each day of the week, and the TB count shown for each day will be the one generated by the
POST /usage/repair/bucket call executed at 11PM on each day.

13.2.5. Response Element Descriptions

averageValue

(String) Average value of the usage statistic during the granularity interval.

For user level or group level statistics, when usage report granularity = hour, day, ormonth, the "aver-
ageValue" will equal the "value" divided by the "count".

When usage report granularity = raw or for bucket usage statistics of any granularity, the "aver-
ageValue" will equal the "value".

184

13.2. GET /usage

Example:

"averageValue": "107956"

bucket

(String) Name of the bucket with which the usage data is associated. This attribute will have a value
only for bucket usage data. For user level or group level usage data this attribute will have null value.

Example:

"bucket": null

count

(String) Data count. The specific meaning of this attribute depends on the usage reporting granularity
and operation type.

When usage report granularity = raw or for bucket usage statistics of any granularity, "count" is not rel-
evant and always returns a "0".

For user level or group level statistics, when usage report granularity = hour, day, ormonth:

l For operation type SB or SO:

o For granularity hour, the "count" will always be "1".

o For granularity day, the "count" will be the number of hourly data points recorded by the
system within the day. For a past day, this will be "24"; for the current day, this will be the
number of hours that have completed so far within the day.

o For granularitymonth, the "count" will be the number of hourly data points recorded by
the system within the month. For a past month, this will be the total number of days in that
month X 24 hours-per-day; for the current month, this will be the number of hours that
have completed so far in the month.

Note For SB and SO, the "count" is relevant only insofar as it is used as the denominator
in the calculation of an average storage value for the granularity interval (the numerator
in the calculation is the "value" attribute).

l For operation type HG, HP, or HD, the "count" is the count of requests within the granularity inter-
val (within the hour, day, or month). For example, if the operation type is HD and the granularity
is hour, this is the count of HTTP Delete requests during the hour. Requests from whitelisted
source IP addresses are excluded from HG, HP, or HD counts (unless the usage data is for a
specific bucket, in which case the whitelist feature does not apply and whitelisted source
addresses are not treated any differently than other source addresses in regard to usage track-
ing.)

Example:

"count": "744"

groupId

(String) Group ID with which the usage data is associated.

For bucket usage this attribute will have null value.

Example:

"groupId": "QA"

185

Chapter 13. usage

ip

(String) IP address of the client that submitted an S3 request. Applicable only if the usage reporting gran-
ularity is raw and the operation type is HG, HP, HD, BI, or BO. Otherwise this attribute will have null
value.

Example:

"ip": ""

maxValue

(string) Maximum value recorded during the granularity interval. For example, for operation type SB this
would be the largest storage byte level reached during the granularity interval. The "maxValue" is repor-
ted only for rollup granularities (hour, day, month). For raw granularity and for bucket usage data of any
granularity it will have a value of "0".

Requests from whitelisted source addresses are excluded from HG, HP, HD "maxValue".

Example:

"maxValue": "305443"

operation

(String) Operation type for which the usage statistics are reported:

l SB = Storage Bytes

l SO = Storage Objects

l HG = S3 HTTP GETs (and HEADs)

l HP = S3 HTTP PUTs (and POSTs)

l HD = S3 HTTP DELETEs

l BI = For bucket usage only, the data transfer IN bytes

l BO = For bucket usage only, the data transfer OUT bytes

l TB = For bucket usage only, the total bytes count for the bucket.

l TO = For bucket usage only, the total objects count for the bucket.

Note The TB and TO operation types are supported only for bucket usage statistics. The
TB and TO counts for a bucket for a specified time period (from startTime to endTime) will
exist only if you previously executed the POST /usage/repair/bucketmethod one or more
times during that time period. That method generates the TB and TO counts for the
bucket, which the system then stores along with a timestamp indicating when the counts
were generated. It's these saved TB and TO counts that are returned by GET /usage for
the bucket. In the case of rolled-up usage data, the most recent TB and TO counts from
within the roll-up period are used.

The SB and SO operation types are also supported for bucket usage statistics, but these
will return the change in the stored bytes and stored object counts during the specified
time interval -- for example, the total increase in a bucket's stored bytes total during each
day in the interval (if you are using granularity "day"), rather than the total number of
bytes in the bucket on each day. The latter is captured by the TB operation type.

Example:

186

13.2. GET /usage

"operation": "SB"

policyId

(String) System-generated unique ID of the storage policy used by the bucket.

This attribute is relevant only to bucket usage data and will be null for group or user-level usage data.

Example:

"policyId": "880e7d065225009b481ff24ae8d893ce"

region

(String) Service region in which the usage occurred.

For bucket usage this attribute will have null value.

Example:

"region": "taoyuan"

timestamp

(String) Timestamp for creation of this usage data, in UTC milliseconds. The specific meaning of the
timestamp depends on the usage reporting granularity and operation type.

When usage report granularity = raw:

l For operation type SB or SO, the "timestamp" is the time when the storage level was recorded by
the /usage/storage API call (which is run by cron job every five minutes)

l For operation type HG, HP, HD, BI, or BO, the "timestamp" is the time when the transaction
occurred.

l For operation type TB or TO (supported for bucket usage only), the "timestamp" is the time when
the POST /usage/repair/bucket call that calculated the TB and TO counts was executed.

When usage report granularity = hour, day, ormonth:

l The "timestamp" is the time that the granularity interval started (the start of the hour, day, or
month for which data is encapsulated in the UsageData object).

Example:

"timestamp": "1498867200000"

uri

(String) URI of the data object. Applicable only for user and group level usage data and only if the
usage reporting granularity is "raw". For user and group level usage data with granularity other than
"raw", this attribute will have an empty value.

For bucket usage this attribute will have a null value.

Example:

"uri": ""

userId

(String) User ID with which the usage data is associated. For group level usage data the userId attribute
will be "*".

For bucket usage this attribute will have null value.

187

Chapter 13. usage

Example:

"userId": "*"

value

(String) Data value. The specific meaning of this attribute depends on the usage reporting granularity
and operation type.

When usage report granularity = raw:

l For operation type SB or SO (or TB or TO in the case of bucket usage statistics), the "value" is the
current storage bytes or current number of stored objects.

l For operation type HG, HP, HD, BI, or BO, the "value" is the data transfer size for the single trans-
action, in bytes.

NoteWith Multipart Upload operations (for large objects), each part upload counts as a
separate transaction toward the HP and BI statistics.

When usage report granularity = hour, day, ormonth:

l For operation type SB or SO for user or group level usage data, the "value" is the sum of the stor-
age level measures recorded by the system during the granularity interval (in bytes for SB or in
number of objects for SO). For example, for granularity day, a current SB measure is recorded for
each hour during the day, and the sum of those hourly measures is the SB "value" for the day.
For SB and SO, this aggregate "value" is relevant only insofar as it is used as the numerator in
the calculation of an average storage value for the granularity interval (the denominator in the
calculation is the "count" attribute).

Note In the case of bucket usage data the hour, day, or month “rollup” value for SB or SO
is the change to the stored byte or stored object count in the bucket during the rollup
period.

l For operation type HG, HP, HD, BI, or BO, the "value" is the sum data transfer size for the gran-
ularity interval, in bytes. For example, if operation type is HP and the granularity is hour, the
"value" is the aggregated data transfer size of all HTTP PUT and POST requests during the hour.

Requests from whitelisted source IP addresses are excluded from HG, HP, and HD values (unless the
usage data is for a specific bucket, in which case the whitelist feature does not apply and whitelisted
source addresses are not treated any differently than other source addresses in regard to usage track-
ing.)

Example:

"value": "80319535"

whitelistAverageValue

(String) Same as "averageValue" above, except this is exclusively for traffic from whitelisted source
addresses.

Note For bucket usage data, traffic from whitelisted sources is bundled in with the main usage
statistics rather than being separated out. For bucket usage all "whitelist*" attributes will have "0"
as their value.

188

13.2. GET /usage

Example:

"whitelistAverageValue": "0"

whitelistCount

(String) Same as "count", except this is exclusively for traffic from whitelisted source addresses.
Example:

"whitelistCount": "0"

whitelistMaxValue

(String) Same as "maxValue" above, except this is exclusively for traffic from whitelisted source
addresses. Example:

"whitelistMaxValue": "0"

whitelistValue

(String) Same as "value", except this is exclusively for traffic from whitelisted source addresses.
Example:

"whitelistValue": "0"

13.2.6. Usage Data Calculation Notes

How Particular S3 Operations Impact Usage Data Counts

To support usage reporting, billing, and the implementation of Quality of Service (QoS) limits, the following
counters are maintained for individual users and for groups:

l Storage bytes

l Storage objects

l Number of requests

l Data bytes IN

l Data bytes OUT

When calculating size for storage byte tracking, the size of the object metadata is included as well as the size
of the object itself. If compression is used for storage of S3 objects, the uncompressed object size is counted
toward storage byte tracking.

When calculating size for data transfer byte tracking (IN and OUT), the size of the HTTP headers is included as
well as the size of the object itself.

The table below shows how particular S3 operations (the left-most column) impact the various service usage
counters (shown in the remaining columns).

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

DELETE (Add
delete marker)

Add Total-Size which is same as
size of object path including buck-
etname (i.e., <buck-
etname>/<objectname>), unless
replacing existing delete marker,
then no change

Incremented
by 1, unless
replacing
existing DM,
then no
change

No change
No
change

No
change

189

Chapter 13. usage

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

DELETE (No
delete marker
added) object,
bucket

If object is successfully deleted,
decremented by Total-Size of
deleted object. If request is to
region where bucket is not loc-
ated, no change.

If object is
successfully
deleted,
decremented
by 1. If
request is to
region where
bucket is not
located, no
change.

No change
No
change

No
change

DELETE object tag-
ging

Decremented by size of old tag-
ging string

No change No change
No
change

No
change

DELETE policy No change No change No change
No
change

No
change

DELETE uploadId
(MP Abort)

If successfully deleted, decre-
mented by Total-Size of
uploaded parts and 1V value
added in MP initiate

If suc-
cessfully
deleted,
decremented
by 1

No change
No
change

No
change

GET bucket, ser-
vice, policy, loc-
ation, acl,
bucketlogging, ver-
sioning, list
uploads, list parts

No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

GET object No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

GET object tagging No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

HEAD object No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

POST MP initiate
Add object name size and
metadata size.

Incremented
by 1

Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

POST MP com-
plete

If replacement object, decrement
by Total-Size of old object. Total
size of completed object
metadata is set to total size of MP
parts and initiate request.

If replace-
ment object,
decrement 1

Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

POST object Incremented by Total-size minus Incremented Incremented Transfer- Transfer-

190

13.2. GET /usage

Operation Storage Bytes Storage
Objects

Num
Requests Bytes IN Bytes

OUT

Total-size of old object, if any
by 1 if new
object

by 1
Size of
request

Size of
response

PUT bucket
Incremented by bucketname size
if bucket created in region, oth-
erwise 0

Incremented
by 1 if bucket
created in
region, oth-
erwise 0

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT bucket log-
ging object

Incremented by Total-Size of log
object

Incremented
by 1

No change
No
change

No
change

PUT part

Add Content-Length of part body.
If replacing an existing part, sub-
tract Content-Length of old part
body.

No change
Incremented
by 1

Add
Transfer-
Size of
request

Add
Transfer-
Size of
response

PUT object
Incremented by Total-size minus
Total-size of old object, if any

Incremented
by 1 if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object CRR

(Cross Region
Replication)

Incremented by Total-size of ori-
ginal object and replica object
combined, plus 51 bytes of
metadata associated with imple-
menting CRR

Incremented
by one if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object copy

Two cases: (1) Metadata COPY.
Increment by source total-size +
difference between new and old
object name. (2) Metadata
REPLACE. Increment by source
content-length + new objectname
+ new meta headers. In both
cases, if replacement object, then
Total-Size of replacement object
is subtracted.

Incremented
by one if new
object

Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT policy, log-
ging, acl, ver-
sioning

No change No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

PUT object tagging
Incremented by size of new tag-
ging string minus size of old tag-
ging string (if any)

No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

Upload Part Copy

Increment by source content-
length. If replacement object,
then Total-Size of replacement
object is subtracted.

No change
Incremented
by 1

Transfer-
Size of
request

Transfer-
Size of
response

How Request Processing Errors Impact Usage Counts

If an S3 request for uploading or downloading data fails to complete due to a processing error within the

191

Chapter 13. usage

HyperStore system, the request still counts towards the data transfer bytes total for usage tracking and QoS
implementation. For example, if a user tries to upload a 1MiB object and the request fails to complete, the 1MiB
is still added to the user’s total for Data Bytes In. It would not impact the user’s Stored Bytes or Stored Objects
counts.

How Auto-Tiering Impacts Usage Counts

With the HyperStore auto-tiering feature, objects can -- on a specified scheduled -- be auto-tiered to Amazon
S3 or a different S3 compliant destination system. When an object is transitioned to the destination system, its
size is removed from the Storage Bytes count in the local HyperStore region. At the same time, a reference to
the transitioned object is created and the size of this reference — 8KiB, regardless of the transitioned object
size — is added to the local Storage Bytes count. For example, if a 100KiB object is auto-tiered to Amazon or a
different HyperStore region or system, the net local effect is a 92KiB reduction in the local Storage Bytes count.

If the object is temporarily restored to local HyperStore storage (through the S3 API method POST Object
restore), then while the object is locally restored the object’s size is added to the local Storage Bytes count and
the 8KiB for the reference is subtracted from the count. After the restore interval ends, the object size is once
again subtracted from Storage Bytes and the 8KiB for the reference is added back.

Auto-tiering does not impact the Storage Objects count.

Note In regard to the maximum stored bytes that your license permits you — for objects that have been
auto-tiered to Amazon, the size of the tiered objects does not count toward your maximum allowed stor-
age capacity. However, the 8KiB per tiered object (described above) does count toward your licensed
maximum storage capacity.

How Server-Side Encryption Impacts Usage Counts

For Server-Side Encryption where the objects are encrypted in storage, "Bytes In" and "Bytes Out" reflect the ori-
ginal, unencrypted object size. The "Storage Bytes" value uses the encrypted object size. Headers are not
encrypted, and thus not included. The increase of size of the encrypted object, i.e., the "padding size", depends
on the AES block size and the amount of padding required.

The padding formula for AES/CBC/PKCS5 padding is as described below.

AES block size = 16

In the PKCS5 padding always a pad block is added at the end. So the padding

bytes vary from 1 to 16.

Non-chunked objects

Cipher size = (plain text size / 16 + 1) * 16.

Padding size = cipher size - plain text size

For example:

20 bytes object: total cipher size = (20/16 + 1) * 16 = 32 bytes

11 bytes object: total cipher size = (11/16 + 1) * 16 = 16 bytes

Chunked objects

Number of full chunks = plain text size / max chunk size

Last (partial) chunk size = plain text size % max chunk size

192

13.2. GET /usage

Cipher chunk size = (max chunk size / 16 + 1) * 16

- If last (partial) chunk size == 0

last chunk padding size = 0

- If last (partial) chunk size > 0

cipher last (partial) chunk size = (last (partial) chunk size / 16 + 1) * 16

last chunk padding size = cipher last (partial) chunk size - last (partial) chunk size

padding size = number of full chunks * (cipher chunk size - max chunk size)

+ last chunk padding size

For example:

max chunk size=1024

1024 bytes object: total cipher size = plain text size + padding size

= 1024 + 1*(1040-1024) + 0

= 1024 + 16

= 1040

1025 bytes object: total cipher size = plain text size + padding size

= 1025 + 1*(1040-1024) + 15

= 1025 + 16 + 15

= 1056

How Compression Impacts Usage Counts

For S3 service usage tracking (for purposes of QoS enforcement and billing), the uncompressed size of objects
is always used, even if you enable compression for all or some of your storage policies.

13.2.7. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

400 Invalid parameter: region = {region}

400 Invalid parameter: regionOffset = {region}

400 Conflicting parameters: {canonicalUserId, id}

13.2.8. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUsage

l Parameters: Same as for GET /usage, except all parameter names start with an upper case letter rather
than lower case

193

Chapter 13. usage

l Response body: Same response data as for GET /usage except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get usage for any group, user, or bucket

o HyperStore group admin user can only get usage for her own group, for users within her own
group, or for buckets owned by users within her own group

o HyperStore regular user can only get his own usage or usage for a bucket that he owns

o IAM user can only use this method if granted admin:GetCloudianUsage permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUsage" action retrieves usage data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. The system does not maintain usage data per
IAM user. For example, if a HyperStore group administrator grants admin:GetCloud-
ianUsage permission to an IAM user, the IAM user will be able to retrieve usage inform-
ation for any HyperStore user in the group administrator's group. And if a HyperStore
regular user grants admin:GetCloudianUsage permission to an IAM user, the IAM user
will be able to retrieve usage information for the parent HyperStore user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUsage&Id=QA|*&Operation=SB&StartTime=201807010000

&EndTime=201808010000&Granularity=month

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUsageResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<UsageData>

etc...

...

...

</UsageData>

<UsageData>

etc...

...

...

</UsageData>

</ListWrapper>

</GetCloudianUsageResponse>

194

13.3. POST /usage/bucket

13.3. POST /usage/bucket

POST /usage/bucket Get raw usage data for multiple buckets

13.3.1. Syntax

POST /usage/bucket

The required request payload is a JSON-formatted UsageBucketReq object. See example below.

13.3.2. Usage Notes

This method retrieves complete raw usage data for one or multiple specified buckets, from during a specified
time period. This method does not support retrieving rolled up hourly, daily, or monthly usage data and it does
not support filtering by the service operation type.

The POST /usage/bucketmethod is supported only if bucket usage statistics are enabled in the system. Bucket
usage statistics are disabled by default. For information on enabling this feature see "Enabling Non-Default
Usage Reporting Features" in the "Usage Reporting and Billing" section of the Cloudian HyperStore Admin-
istrator's Guide.

Note If you want to retrieve rolled up usage data for a bucket, or bucket usage data for just a particular
service operation type, use the GET /usage method instead. Note however that with the GET /usage
method you can only get usage data for one bucket at a time.

13.3.3. Example Using cURL

The example below retrieves raw usage data for two buckets named "b123" and "mybucket", for a one hour
period. In this example the JSON-formatted UsageBucketReq object is specified in a text file named buckets_
usage.txt which is then referenced as the data input to the cURL command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @buckets_usage.txt https://localhost:19443/usage/bucket | python -mjson.tool

The buckets_usage.txt file content in this example is as follows.

{

"buckets": [

"b123",

"mybucket"

],

"endTime": "201611291900",

"startTime": "201611291800"

}

The response payload is a JSON-formatted list of UsageBucketRes objects (with one such object for each
bucket), which in this example is as follows. The response payload is truncated here.

[

{

"bucket": "b123",

"data": [

195

Chapter 13. usage

{

"averageValue": "3222",

"bucket": "b123",

"count": "0",

"groupId": null,

"ip": "10.10.0.1",

"maxValue": "0",

"operation": "BO",

"region": null,

"timestamp": "1480442520000",

"uri": null,

"userId": null,

"value": "3222",

"whitelistAverageValue": "0",

"whitelistCount": "0",

"whitelistMaxValue": "0",

"whitelistValue": "0"

},

...

...

Note If during your specified start and end time interval there were no operations of a particular type in
the bucket, then no data will be returned for that operation type. For example, if there were no deletes
during the interval then no "HD" operation usage data will be returned.

13.3.4. Request Element Descriptions

buckets

(Mandatory, list<string>) List of the buckets for which to retrieve raw usage data. Example:

"buckets": ["b123","mybucket"]

endTime

(Mandatory, string) End time (in GMT) of the interval for which to retrieve raw usage data. Format is
yyyyMMddHHmm. Example:

"endTime": "201611291900"

startTime

(Mandatory, string) Start time (in GMT) of the interval for which to retrieve raw usage data. Format is
yyyyMMddHHmm. Example:

"startTime": "201611291800

13.3.5. Response Element Descriptions

bucket

(String) Bucket with which the usage data is associated. Example:

"bucket": "b123"

data

196

13.4. POST /usage/repair

(List<UsageData>) List of UsageData objects. For descriptions of individual UsageData elements see
"GET /usage Get usage data for group, user, or bucket" (page 179). Note that in the context of a
UsageBucketRes object, the UsageData objects will always be for "raw" granularity.

13.3.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required attributes : {buckets, startTime, endTime}

400 Invalid JSON Object

13.4. POST /usage/repair

POST /usage/repair Repair storage usage data for group or system

13.4.1. Syntax

POST /usage/repair?groupId=string[&summarizeCountsOnly=bool][®ion=string]

There is no request payload.

13.4.2. Parameter Descriptions

groupId

(Mandatory, string) The group for which to repair user-level and group-level storage usage counts. If
groupId is "ALL", repair is performed for all groups.

summarizeCountsOnly

(Optional, boolean) If set to "true" while "groupId" = a specific group, then the operation will not validate
or repair usage data counters for individual users within the specified group. Instead, it will presume the
user-level counters to be correct, and will only sum up the user-level counters in order to update the
counters for the group as a whole. This option is useful after you have been running POST /us-

age/repair/user operations (which validate and repair usage counters for individual users without
updating the group-level counters for the groups that those users belong to).

If set to "true" while "groupId" = ALL, then the operation will only sum up the existing group-level usage
counters to update the counters for the system as a whole.

If set to "false", then the operation runs in the normal manner, by first validating and repairing user-level
usage counters within the specified group and then using that repaired data to update the group-level
counters for the group.

Defaults to "false" if the "summarizeCountsOnly" parameter is omitted.

197

Chapter 13. usage

13.4.3. Usage Notes

This method checks and repairs storage usage data for specified user groups or for all groups in the system.
For each repaired group the operation repairs the storage usage counts for individual users within the group
as well as the aggregate counts for the group as a whole. If you have enabled per-bucket object and byte
counts in your system, then the usage repair will check and repair those per-bucket counts also.

For background information on storage usage data repair, see "Validating Storage Usage Data" in the "Usage
Reporting and Billing" section of the Cloudian HyperStore Administrator's Guide.

This is a resource-intensive operation if you have a large number of users in your system. Note that a more
focused type of storage usage repair is run as a recurring HyperStore cron job -- see POST /us-
age/repair/dirtyusers.

Note In a multi-region HyperStore system, this method can be applied to usage data in all regions by
submitting the request to the Admin Service in the default region and omitting the "region" query para-
meter. You cannot directly run this method against Admin Service nodes in non-default regions.

13.4.4. Example Using cURL

The example below checks and repairs storage usage data for the "engineering" group.

curl -X POST -k -u sysadmin:password \

https://localhost:19443/usage/repair?groupId=engineering

13.4.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

13.5. POST /usage/repair/bucket

POST /usage/repair/bucket Retrieve total bytes and total objects for a bucket

13.5.1. Syntax

POST /usage/repair/bucket?bucket=string

There is no request payload.

13.5.2. Parameter Descriptions

bucket

(Mandatory, string): The bucket name.

198

13.6. POST /usage/repair/dirtyusers

13.5.3. Usage Notes

This method calculates and returns the current counts for total bytes stored and number of objects stored in a
specified bucket. The calculation entails reading metadata in the Metadata DB for objects in the bucket.

This is potentially a resource-intensive operation, depending on how many objects are in the bucket.

Note In HyperStore 7.4 and later, the recommendedmethods for retrieving per bucket byte
counts and object counts are the GET /system/bytecount andGET /system/objectcount calls-- not
the POST /usage/repair/bucket call.

13.5.4. Example Using cURL

The example below calculates and returns the current total bytes stored (TB) and total objects stored (TO) for a
bucket named "testbucket1".

curl -X POST -k -u sysadmin:password \

https://localhost:19443/usage/repair/bucket?bucket=testbucket1 | python -mjson.tool

The response payload is the JSON-formatted TB and TO values.

{

"TB": 305360,

"TO": 9

}

13.5.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

13.6. POST /usage/repair/dirtyusers

POST /usage/repair/dirtyusers Repair storage usage data for users with recent
activity

13.6.1. Syntax

POST /usage/repair/dirtyusers[?summarizeCounts=bool]

There is no request payload.

13.6.2. Parameter Descriptions

summarizeCounts

(Optional, boolean) If set to "true", then the POST /usage/repair/dirtyusers operation -- after repairing
usage counters for individual users -- will update the group-level usage counters for the groups to which
those repaired users belong. It will then also update system-level usage counts, based on the updated
group counters.

199

Chapter 13. usage

If set to "false", then the operation will repair only user-level counters, and will not update the group or
whole-system counters.

Defaults to "true".

13.6.3. Usage Notes

This method checks and repairs storage usage data for users whose storage bytes and/or storage object
counts in the Redis QoS database have changed since the last time those users' counts were subjected to a
usage repair. This method selects users at random from among this set of "dirty" users, and performs usage
repair for a configurable maximum number of those users per method execution (mts.properties.erb: usage.re-
pair.maxdirtyusers; default = 1000).

For background information on storage usage data repair, see "Validating Storage Usage Data" in the "Usage
Reporting and Billing" section of the Cloudian HyperStore Administrator's Guide.

Note This method is invoked once every 12 hours by a HyperStore usage data processing cron job. In
a multi-region system, a separate cron job is run from within each region.

Note At the conclusion of this method's run, in cloudian-admin.log there will be an INFO level message
from the CassandraUsageAccess::repairDirtyUsers component that indicates "1000 users processed.
N remaining", where N is the number of remaining dirty users for whom usage repair was not per-
formed.

Also in cloudian-admin.log, the CassandraUsageAccess::repairDirtyUsers component writes two INFO
messages for each user processed — one message indicating the start of processing the user and one
message indicating the completion of processing the user. If a correction was made to the user’s Redis
QoS counts for stored bytes and/or stored objects, a third INFOmessage is sandwiched between the
other two, indicating "Processed storage update: " and the correct counts.

13.6.4. Example Using cURL

The example below checks and repairs storage usage data for "dirty" users. It will also update group-level and
system-level storage usage counts based on the repaired user-level counts.

curl -X POST -k -u sysadmin:password https://localhost:19443/usage/repair/dirtyusers

13.6.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

200

13.7. POST /usage/repair/user

13.7. POST /usage/repair/user

POST /usage/repair/user Repair storage usage data for a user

13.7.1. Syntax

POST /usage/repair/user?groupId=string&userId=string[®ion=string]

There is no request payload.

13.7.2. Parameter Descriptions

groupId

(Mandatory, string) The ID of the group to which the target user belongs.

userId

(Mandatory, string) The ID of the user for whom usage data repair is to be performed.

region

(Optional, string) The region for which to perform the usage data repair. If the region parameter is not
specified, the repair is performed for all service regions.

13.7.3. Usage Notes

This method checks and repairs storage usage data for a single specified user. If you have enabled per-bucket
object and byte counts in your system, then the usage repair will also check and repair those per-bucket counts
for the user's buckets.

This operation does not update the group-level usage counters for the group to which the user belongs. For
information about doing the latter, see POST /usage/repair— particularly the "summarizeCountsOnly" option.
This is relevant especially when you are repairing multiple individual users within a group, one at a time, using
the POST /usage/repair/user method. In that case you should subsequently update the group-level usage coun-
ters for the group, using the POST /usage/repair method with the "summarizeCountsOnly" option.

13.7.4. Example Using cURL

The example below checks and repair storage usage data for the user "gladdes" in the "engineering" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/usage/repair/user?groupId=engineering&userId=gladdes'

13.7.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

201

Chapter 13. usage

13.8. POST /usage/rollup

POST /usage/rollup Roll up usage data

13.8.1. Syntax

POST /usage/rollup?granularity=enum&startTime=string&unitCount=integer

There is no request payload.

13.8.2. Parameter Descriptions

granularity

(Mandatory, enum) The time period granularity of the usage data to generate. Supported values are:

l hour—Hourly rollup data

l day—Daily rollup data

l month—Monthly rollup data

startTime

(Mandatory, string) The start time in GMT. The format depends on the granularity of the usage data that
you are generating:

l For hourly rollup data use format yyyyMMddHH. The start time will be the start of the hour that
you specify.

l For daily rollup data use format yyyyMMdd. The start time will be the start of the day that you spe-
cify.

l For monthly rollup data use format yyyyMM. The start time will be the start of the month that you
specify.

unitCount

(Optional, integer) The number of units of the specified "granularity" to generate. Supported range is
[1,100].

Defaults to 1 unit if not specified.

13.8.3. Usage Notes

This method triggers the generation of "rollup" (aggregated across a time interval) service usage data from
more granular data. Hourly rollup data is derived from "raw" transactional data. Daily rollup data and monthly
rollup data are derived from hourly rollup data.

This method does not return the rolled up service usage data in the response, it only generates the rollup data
and stores it in the system. To retrieve raw or rolled-up service usage data use the GET /usage method.

Note
* The POST /usage/rollup method is called regularly by HyperStore usage data processing cron jobs.
The cron job to create hourly rollup data runs each hour; the cron job to create daily rollup data runs

202

13.9. POST /usage/storage

once per day; and the cron job to create monthly rollup data runs once per month.
* In a multi-region system the rollup operations act only on usage data in the local service region. Con-
sequently, cron jobs that trigger these operations are configured in each region.

13.8.4. Example Using cURL

The example below creates hour roll-up usage data for the hour from midnight to 1AM on August 15, 2017.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/usage/rollup?granularity=hour&startTime=2017081500&unitCount=1'

13.8.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

13.9. POST /usage/storage

POST /usage/storage Post raw storage usage data for users with recent activity

13.9.1. Syntax

POST /usage/storage

There is no request payload.

13.9.2. Usage Notes

The Redis QoS database maintains per-user and per-group counters for stored bytes and number of stored
objects, based on transaction data that it receives from the S3 Service. This Admin API method writes these
Redis-based stored bytes and stored object counts to the "Raw" column family in the Cassandra "Reports" key-
space. Subsequently the POST /usage/rollupmethod can be used to roll up this "Raw" data into hourly, daily,
and monthly aggregate data in Cassandra.

This API method applies only to users who have uploaded or deleted objects since the last time this method
was executed.

Note This API method is triggered every 5 minutes by a HyperStore usage data processing cron job.
The method acts only on usage data in the local service region. Consequently, in a multi-region sys-
tem, cron jobs that trigger this method are automatically configured in each region.

203

Chapter 13. usage

13.9.3. Example Using cURL

The example below triggers the writing of raw stored bytes and stored objects counts into Cassandra, for users
who have been active since the last running of this API method.

curl -X POST -k -u sysadmin:password https://localhost:19443/usage/storage

13.9.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

13.10. POST /usage/storageall

POST /usage/storageall Post raw storage usage data for all users

13.10.1. Syntax

POST /usage/storageall

There is no request payload.

13.10.2. Usage Notes

This method performs the same operation as described for POST /usage/storage except it applies to all users,
not just recently active users.

Note This API method is triggered once each day by a HyperStore usage data processing cron job.
The method acts only on usage data in the local service region. Consequently, in a multi-region sys-
tem, cron jobs that trigger this method are automatically configured in each region.

13.10.3. Example Using cURL

The example below triggers the writing of raw stored bytes and stored objects counts into Cassandra, for all
users.

curl -X POST -k -u sysadmin:password https://localhost:19443/usage/storageall

13.10.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13).

204

Chapter 14. user
The Admin API methods built around the user resource are for managing HyperStore account root users. This
includes support for creating and deleting user accounts. These methods also support management of users'
security credentials and the assignment of rating plans to users.

Note These API methods do not apply to IAM users that can be created by an account root user under
the user's account. IAM users are created and managed via the IAM API.

Methods associated with the user resource:

l "DELETE /user" (page 206)

l "DELETE /user/credentials" (page 207)

l "DELETE /user/deleted" (page 208)

l "DELETE /user/mfa/deleteDevice" (page 209)

l "GET /user" (page 210)

l "GET /user/credentials" (page 213)

l "GET /user/credentials/list" (page 215)

l "GET /user/credentials/list/active" (page 218)

l "GET /user/islocked" (page 220)

l "GET /user/list" (page 222)

l "GET /user/mfa/list" (page 226)

l "GET /user/password/verify" (page 227)

l "GET /user/ratingPlan" (page 228)

l "POST /user" (page 232)

l "POST /user/credentials" (page 233)

l "POST /user/credentials/status" (page 234)

l "POST /user/mfa/createDevice" (page 235)

l "POST /user/mfa/deactivateDevice" (page 237)

l "POST /user/mfa/enableDevice" (page 238)

l "POST /user/mfa/resyncDevice" (page 240)

l "POST /user/mfa/verify" (page 241)

l "POST /user/password" (page 243)

l "POST /user/ratingPlanId" (page 244)

l "POST /user/unlock" (page 245)

l "PUT /user" (page 247)

l "PUT /user/credentials" (page 252)

205

Chapter 14. user

14.1. DELETE /user

DELETE /user Delete a user

14.1.1. Syntax

DELETE /user?[userId=string&groupId=string][canonicalUserId=string]

There is no request payload.

14.1.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.1.3. Usage Notes

In the case of a user who currently owns buckets:

l If the configuration setting common.csv: allow_delete_users_with_buckets is set to true (the default for
systems originally installed as 7.2.x or earlier), then a user who owns buckets can be deleted and the
system will not only delete the user but will also automatically delete the user's buckets and all the
data in those buckets. This includes buckets and data belonging to any IAM users who have been cre-
ated under the user account root. The deleted data will not be recoverable.

l If the configuration setting common.csv: allow_delete_users_with_buckets is set to false (the default for
systems originally installed as 7.3 or later), then the system will not allow a user who owns buckets to
be deleted. Instead, the user or an administrator must first delete all buckets owned by the user -- via
the CMC or a different S3 client application -- including any buckets belonging IAM users under the
user account root. Only after all such buckets are deleted can the user then be deleted.

The operations associated with deleting a user are performed asynchronously. If you receive an OK response
to a DELETE /user request, this indicates that the user’s status has successfully transitioned to "deleting", and
the associated operations are underway. You can use the GET /user/list method to check on which users
within a group are in "deleting" status or "deleted" status ("deleted" status indicates that all associated oper-
ations have completed, including deletion of the user’s stored S3 buckets and objects).

206

14.2. DELETE /user/credentials

Note Service usage report data for a deleted user is retained for a period of time as configured by the
reports.rollup.ttl setting in mts.properties.erb. You can retrieve usage data for a recently deleted user
via the GET /usage method.

Note Regarding system admin users:
* You cannot delete the default system administrator account (the user with user ID "admin"). This is
not allowed.
* For other system admin users, deleting the user also deletes the user's HyperStore Shell account.

14.1.4. Example Using cURL

The example below deletes a user with ID "John" who is in the "QA" group.

curl -X DELETE -k -u sysadmin:password \

'https://localhost:19443/user?userId=John&groupId=QA'

14.1.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 User does not exist

14.2. DELETE /user/credentials

DELETE /user/credentials Delete a user's S3 security credential

14.2.1. Syntax

DELETE /user/credentials?accessKey=urlencoded-string

There is no request payload.

14.2.2. Parameter Descriptions

accessKey

(Mandatory, string) The S3 access key from the key pair to delete. Must be URL-encoded if the key
includes non-ASCII characters.

Note An S3 security credential is a key pair consisting of an "access key" (public key) and a
"secret key" (private key).

207

Chapter 14. user

14.2.3. Example Using cURL

The example below deletes a user's S3 credential as specified by the access key. Note that since each S3
access key is unique in the system, you do not need to specify the user to whom the key is assigned.

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/user/credentials?accessKey=21289bab1738ffdc792a

14.2.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {accessKey}

400 Invalid Access Key

14.3. DELETE /user/deleted

DELETE /user/deleted Purge profile data of a deleted user or users

14.3.1. Syntax

DELETE /user/deleted[?canonicalUserId=string|groupId=string]

There is no request payload.

14.3.2. Parameter Descriptions

canonicalUserId

(Optional, string) System-generated canonical user ID of the deleted user for whom to purge profile
data.

If you don't know the user's canonical ID you can retrieve it via the Admin API methods GET /user or
GET /user/list.

groupId

(Optional, string) Unique identifier of the group for which to purge all user profile data for deleted users.

14.3.3. Usage Notes

After deleting a user or users, you can use this Admin API method if you want to purge the deleted users' profile
information from the Cassandra database. Otherwise, the deleted users' profile information is retained in Cas-
sandra indefinitely.

208

14.4. DELETE /user/mfa/deleteDevice

Use the canonicalUserId parameter to specify just a single user for whom to purge profile data, or use the
groupId parameter to purge profile data for all deleted users in the specified group. Do not use both canon-
icalUserId and groupId together.

IMPORTANT ! If you purge a deleted user’s profile information, you will no longer be able to retrieve
that user’s profile information via the GET /user/list method. This means that you will no longer be able
to retrieve the deleted user’s canonical user ID. Without a deleted user’s canonical user ID, you will not
be able to retrieve usage history for the user. Consequently, you should purge a deleted user’s profile
information only if you have some independent record of the user’s canonical user ID (outside of the
Cassandra database); or if you are confident that you will no longer require access to the deleted
user’s usage history.

14.3.4. Example Using cURL

The example below purges a single deleted user's profile data.

curl -X DELETE -k -u sysadmin:password \

https://localhost:19443/user/deleted?canonicalUserId=bd0796cd9746ef9cc4ef656ddaacfac4

14.3.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Conflicting or missing parameters : {canonicalUserId, groupId}

400 User does not exist or is not in a deleted state.

14.4. DELETE /user/mfa/deleteDevice

DELETE /user/mfa/deleteDevice Delete an MFA device from a user's account

14.4.1. Syntax

DELETE /user/mfa/deleteDevice?[userId=string&groupId=string]

[canonicalUserId=string]&serialNumber=string

There is no request payload.

14.4.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

209

Chapter 14. user

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

serialNumber

Serial number of the MFA device to delete. This takes the form of an ARN. Here is an example of the MFA
serial number format used for HyperStore:

arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device

14.4.3. Usage Notes

Use this method to delete an MFA device from a HyperStore account root user.

Note You cannot delete an MFA device that is currently enabled/activated. If the device is activated,
before you can delete it you must first deactivate it by calling the POST /user/mfa/deactivateDevice
method.

14.4.4. Example Using cURL

The example below deletes an MFA device from the account of the user "PubsUser1" in the "Pubs" group.

curl -X DELETE -k -u sysadmin:password \

'https://localhost:19443/user/mfa/deleteDevice?userId=PubsUser1&groupId=Pubs&

serialNumber=arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device'

14.4.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 User is inactive or is not found

400 Invalid parameter or missing required parameter

404 Specified MFA Device does not exist or does not belong to specified user

409 Device is active. Must deactivate before deleting.

14.5. GET /user

GET /user Get a user's profile

210

14.5. GET /user

14.5.1. Syntax

GET /user?[userId=string&groupId=string][canonicalUserId=string]

There is no request payload.

14.5.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.5.3. Usage Notes

To retrieve profile information for a user who has been deleted from the system, use the "canonicalUserId".

14.5.4. Example Using cURL

The example below retrieves a user with ID "John" who is in the "QA" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user?userId=John&groupId=QA' | python -mjson.tool

The response payload is a JSON-formatted UserInfo object, which in this example is as follows.

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

211

Chapter 14. user

"zip": ""

}

14.5.5. Response Element Descriptions

For descriptions of UserInfo object elements see "PUT /user Create a new user" (page 247).

14.5.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 User does not exist

400 Missing Required parameters : {userId, groupId}

14.5.7. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUser

l Parameters: Same as for GET /user, except all parameter names start with an upper case letter rather
than lower case

l Response body: Same response data as for GET /user except the data is formatted in XML rather than
JSON

l Role-based restrictions:

o HyperStore system admin user can get any user's profile

o HyperStore group admin user can only get the profiles of users within her own group

o HyperStore regular user can only get own profile

o IAM user can only use this method if granted admin:GetCloudianUser permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUser" action retrieves profile data for Cloudian HyperStore user
accounts, not for subsidiary IAM users. For example, if a HyperStore group administrator
grants admin:GetCloudianUser permission to an IAM user, the IAM user will be able to
retrieve profile information for any HyperStore user in the group administrator's group.
And if a HyperStore regular user grants admin:GetCloudianUser permission to an
IAM user, the IAM user will be able to retrieve profile information for the parent Hyper-
Store user.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUser&UserId=John&GroupId=QA

212

14.6. GET /user/credentials

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<CassandraUserInfo>

<active>Active</active>

etc...

...

...

</CassandraUserInfo>

</GetCloudianUserResponse>

14.6. GET /user/credentials

GET /user/credentials Get a user's S3 secret key corresponding to a supplied
access key

14.6.1. Syntax

GET /user/credentials?accessKey=urlencoded-string

There is no request payload.

14.6.2. Parameter Descriptions

accessKey

(Mandatory, string) The S3 access key from the key pair to retrieve. Must be URL-encoded if the key
includes non-ASCII characters.

Note An S3 security credential is a key pair consisting of an "access key" (public key) and a
"secret key" (private key).

14.6.3. Example Using cURL

The example below retrieves the S3 credentials object corresponding to a specified S3 access key. Note that
since each S3 access key is unique in the system, you do not need to specify the user to whom the key is
assigned.

curl -X GET -k -u sysadmin:password \

https://localhost:19443/user/credentials?accessKey=009c156c79e64e0e4928 \

| python -mjson.tool

213

Chapter 14. user

The response payload is a JSON-formatted SecurityInfo object, which in this example is as follows.

{

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

}

14.6.4. Response Element Descriptions

For descriptions of SecurityInfo object elements see "PUT /user/credentials Create a new S3 credential for
a user" (page 252).

14.6.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 No Data Found

400 Missing required parameters : {accessKey}

14.6.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUserCredentials

l Parameters: Same as for GET /user/credentials, except all parameter names start with an upper case let-
ter rather than lower case

l Response body: Same response data as for GET /user/credentials except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's credentials

o HyperStore group admin user can only get the credentials of users within her own group

o HyperStore regular user can only get own credentials

o IAM user can only use this method if granted admin:GetCloudianUserCredentials permission by
an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentials" action retrieves credentials for Cloudian Hyper-
Store user accounts, not for subsidiary IAM users. For example, if a HyperStore group
administrator grants admin:GetCloudianUserCredentials permission to an IAM user, the
IAM user will be able to retrieve credentials for any HyperStore user in the group

214

14.7. GET /user/credentials/list

administrator's group. And if a HyperStore regular user grants admin:GetCloud-
ianUserCredentials permission to an IAM user, the IAM user will be able to retrieve the
parent HyperStore user's credentials.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentials&AccessKey=009c156c79e64e0e4928

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

</GetCloudianUserCredentialsResponse>

14.7. GET /user/credentials/list

GET /user/credentials/list Get a user's list of S3 security credentials

14.7.1. Syntax

GET /user/credentials/list?[userId=string&groupId=string][canonicalUserId=string]

[isRootAccountOnly=boolean]

There is no request payload.

14.7.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

215

Chapter 14. user

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

isRootAccountOnly

If this parameter is included in the call and set to true, then only credentials belonging to the HyperStore
account root user will be return. If this parameter is omitted or set to false, this call will return the account root
user's credentials and also the credentials of any IAM users that have been created under the account root.

14.7.3. Usage Notes

This method retrieves all of the user's S3 credentials -- active credentials as well as inactive (disabled) cre-
dentials.

14.7.4. Example Using cURL

The example below retrieves all of the S3 security credentials belonging to user "John" in the "QA" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/credentials/list?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted list of SecurityInfo objects, which in this example is as follows.

[

{

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

},

{

"accessKey": "21289bab1738ffdc792a",

"active": false,

"createDate": 1502283467021,

"expireDate": null,

"secretKey": "o5jqJtqV36+sENGLozEUg1EXEmQp9V6yfCHLFCJk"

}

]

14.7.5. Response Element Descriptions

For descriptions of SecurityInfo object elements see "PUT /user/credentials Create a new S3 credential for
a user" (page 252).

14.7.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

216

14.7. GET /user/credentials/list

Status Code Description

204 No Access Key found

400 Missing Required parameters : {userId, groupId}

400 User/Group does not exist

14.7.7. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUserCredentialsList

l Parameters: Same as for GET /user/credentials/list, except all parameter names start with an upper
case letter rather than lower case

l Response body: Same response data as for GET /user/credentials/list except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's credentials list

o HyperStore group admin user can only get the credentials list of users within her own group

o HyperStore regular user can only get own credentials list

o IAM user can only use this method if granted admin:GetCloudianUserCredentialsList per-
mission by an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentialsList" action retrieves credentials for Cloudian
HyperStore user accounts, not for subsidiary IAM users. For example, if a HyperStore
group administrator grants admin:GetCloudianUserCredentialsList permission to an
IAM user, the IAM user will be able to retrieve a credentials list for any HyperStore user
in the group administrator's group. And if a HyperStore regular user grants
admin:GetCloudianUserCredentialsList permission to an IAM user, the IAM user will be
able to retrieve the parent HyperStore user's credentials list.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentialsList&UserId=John&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

217

Chapter 14. user

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

<SecurityInfo>

etc...

...

</SecurityInfo>

</ListWrapper>

</GetCloudianUserCredentialsListResponse>

14.8. GET /user/credentials/list/active

GET /user/credentials/list/active Get a user's list of active S3 security credentials

14.8.1. Syntax

GET /user/credentials/list/active?[userId=string&groupId=string][canonicalUserId=string]

There is no request payload.

14.8.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.8.3. Usage Notes

This retrieves the user's active S3 credentials. Inactive (disabled) credentials are not returned.

14.8.4. Example Using cURL

The example below retrieves the active S3 credentials for user "John" in the "QA" group.

218

14.8. GET /user/credentials/list/active

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/credentials/list/active?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted list of SecurityInfo objects, which in this example is as follows (note
that this user has only one active credential).

[

{

"accessKey": "009c156c79e64e0e4928",

"active": true,

"createDate": 1502279336024,

"expireDate": null,

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG

}

]

14.8.5. Response Element Descriptions

For descriptions of SecurityInfo object elements see "PUT /user/credentials Create a new S3 credential for
a user" (page 252).

14.8.6. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 No Access Key found

400 Missing Required parameters : {userId, groupId}

400 User/Group does not exist

14.8.7. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUserCredentialsListActive

l Parameters: Same as for GET /user/credentials/list/active, except all parameter names start with an
upper case letter rather than lower case

l Response body: Same response data as for GET /user/credentials/list/active except:

o The data is formatted in XML rather than JSON

o The secretKey is not included in the response

l Role-based restrictions:

o HyperStore system admin user can get any user's active credentials list

o HyperStore group admin user can only get the active credentials list of users within her own
group

o HyperStore regular user can only get own active credentials list

219

Chapter 14. user

o IAM user can only use this method if granted admin:GetCloudianUserCredentialsListActive per-
mission by an IAM policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserCredentialsListActive" action retrieves credentials for Cloud-
ian HyperStore user accounts, not for subsidiary IAM users. For example, if a HyperStore
group administrator grants admin:GetCloudianUserCredentialsListActive permission to
an IAM user, the IAM user will be able to retrieve an active credentials list for any Hyper-
Store user in the group administrator's group. And if a HyperStore regular user grants
admin:GetCloudianUserCredentialsListActive permission to an IAM user, the IAM user
will be able to retrieve the parent HyperStore user's active credentials list.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserCredentialsListActive&UserId=John&GroupId=QA

<request headers including authorization info>

RESPONSE

200 OK

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserCredentialsListActiveResponse xmlns="https://iam.amazonaws.com/doc/2010-05-

08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<SecurityInfo>

<accessKey>40602cdfaef3a676594d</accessKey>

etc...

...

</SecurityInfo>

<SecurityInfo>

etc...

...

</SecurityInfo>

</ListWrapper>

</GetCloudianUserCredentialsListActiveResponse>

14.9. GET /user/islocked

GET /user/islocked Get a user's lock-out status

14.9.1. Syntax

GET /user/islocked?[userId=string&groupId=string][canonicalUserId=string]

220

14.9. GET /user/islocked

There is no request payload.

14.9.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.9.3. Usage Notes

This method retrieves the user's CMC password lock-out status. A user may become temporarily locked out of
the CMC if you have the password lock-out feature enabled in your system, and within a defined time interval
the user makes too many login attempts using an incorrect password. The password-lock feature is con-
figurable by common.csv: user_password_lock_enabled and the other user_password_lock_* settings in com-
mon.csv.

If a user is locked out, the lock-out will expire automatically after a configurable period (30 minutes by default).
Alternatively, you can unlock a user immediately by using the "POST /user/unlock Unlock a locked-out
user" (page 245) method.

14.9.4. Example Using cURL

The example below retrieves the lock-out status of the user John in the QA group. The response indicates that
John is locked out.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/islocked?userId=John&groupId=QA'

true

14.9.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or conflicting parameters : {userId, groupId,canonicalUserId}

400 User/Group does not exist

221

Chapter 14. user

14.10. GET /user/list

GET /user/list Get a list of user profiles

14.10.1. Syntax

GET /user/list?groupId=string&userType=enum&userStatus=enum[&prefix=string]

[&limit=integer][&offset=string][&extended=boolean]

There is no request payload.

14.10.2. Parameter Descriptions

groupId

(Mandatory, string) Unique identifier of the group for which to retrieve a user list.

Note The group ID for system admins is "0".

userType

(Mandatory, enum) Retrieve users of this type. Options are:

l admin— Administrators. If the "groupId" parameter is set to "0" this would be system admins; for
any other group this would be group admins.

l user—Regular users who lack administrative privileges.

l all—Retrieve users of all types.

userStatus

(Mandatory, enum) Retrieve users who have this status. Options are:

l active— Active users.

l inactive— Inactive users. These users have had their status set to inactive via the POST /user
method (with the UserInfo object attribute "active" set to false). These users' stored S3 objects
still exist, but their S3 access credentials have been deactivated.

l deleted—Deleted users. These users have been deleted from the service via the DELETE /user
method. Their S3 access credentials have been deleted, and their S3 buckets and objects have
been deleted and are unrecoverable.

l deleting— These users are in the process of being deleted from the service via the DELETE
/user method. The deletion process for these users has not yet completed.

l all—Retrieve active users and inactive users. This does not retrieve users who have status
"deleted" or "deleting". To retrieve deleted or deleting users, specify "deleted" or "deleting" for
the userStatus request parameter -- not "all".

Note Since the CMC does not support retrieving users with status "deleted" or "deleting",
the only way to retrieve a list of such users is through the Admin API's GET /user/list
method.

222

14.10. GET /user/list

prefix

(Optional, string) If specified, a user ID prefix to use for filtering. For example, if you specify "prefix=arc"
then only users whose user ID starts with "arc" would be retrieved.

Defaults to empty string (meaning that no prefix-based filtering is performed).

limit

(Optional, integer) For purposes of pagination, the maximum number of users to return in one response.
In the response the users are sorted alphanumerically and if more than "limit" users meet the filtering cri-
teria, then the actual number of users returned will be "limit plus 1" (for example, 101 users if the limit is
100). The last, extra returned user — the "plus 1" — is an indicator that there are more users than could
be returned in the current response (given the specified "limit" value). That last user’s ID can then be
used as the "offset" value in a subsequent request that retrieves additional users.

Note If the offset user happens to be the last user in the entire set of matching users, the sub-
sequent query using the offset will return no users.

Defaults to 100.

offset

(Optional, string) The user ID with which to start the response list of users for the current request, sorted
alphanumerically. The "offset" parameter can be used for purposes of pagination within a large result
set that is being retrieved via multiple sequential requests. See the description of "limit" above for more
information.

If "offset" is not specified, the first user in the response list will be the alphanumerically first user from the
entire result set.

extended

(Optional, boolean) If extended=true, then in the GET user/list response each listed UserInfo object will
be extended to also include the user's lock-out status, and the user's MFA enablement date and device
serial number (if the user has MFA enabled).

Defaults to false.

14.10.3. Example Using cURL

The example below retrieves a list of all active users in the "QA" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/list?groupId=QA&userType=all&userStatus=active' \

| python -mjson.tool

The response payload is a JSON-formatted list of UserInfo objects, which in this example is as follows.

[

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "fd221552ff4ddc857d7a9ca316bb8344",

"city": "",

223

Chapter 14. user

"country": "",

"emailAddr": "",

"fullName": "Glory Bee",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "Glory",

"userType": "User",

"website": "",

"zip": ""

},

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

},

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "4dc9cd1c20c78eb6c84bb825110fddcb",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "Xiao Li",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "Xiao",

"userType": "GroupAdmin",

"website": "",

"zip": ""

}

]

14.10.4. Response Element Descriptions

For descriptions of UserInfo object elements see "PUT /user Create a new user" (page 247).

224

14.10. GET /user/list

14.10.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {groupId, userType, userStatus}

400 Invalid user type. Valid values {admin, user, all}

400 Invalid user status. Valid values {active, inactive, all}

400 Invalid limit

14.10.6. RBAC Version of this Method

HyperStore's IAM Service supports an RBAC version of this API method. For an overview of the RBAC feature
see "Role-Based Access to Admin API Operations" (page 19).

l Action name:GetCloudianUserList

l Parameters: Same as for GET /user/list, except all parameter names start with an upper case letter
rather than lower case

l Response body: Same response data as for GET /user/list except the data is formatted in XML rather
than JSON

l Role-based restrictions:

o HyperStore system admin user can get any group's user list

o HyperStore group admin user can only get the user list for her own group

o HyperStore regular user cannot use this method

o IAM user can only use this method if granted admin:GetCloudianUserList permission by an IAM
policy, and subject to the same restriction as the parent HyperStore user.

Note The "GetCloudianUserList" action retrieves user profile data for Cloudian Hyper-
Store user accounts, not for subsidiary IAM users. For example, if a HyperStore group
administrator grants admin:GetCloudianUserList permission to an IAM user, the IAM user
will be able to retrieve profile information for any HyperStore user in the group admin-
istrator's group.

l Sample request and response (abridged):

REQUEST

http://localhost:16080/?Action=GetCloudianUserList&GroupId=QA&UserType=all&UserStatus=active

<request headers including authorization info>

RESPONSE

200 OK

225

Chapter 14. user

<?xml version="1.0" encoding="utf-8"?>

<GetCloudianUserListResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">

<ResponseMetadata>

<RequestId>system-generated-request-id</RequestId>

</ResponseMetadata>

<ListWrapper>

<CassandraUserInfo>

<active>Active</active>

etc...

...

</CassandraUserInfo>

<CassandraUserInfo>

etc...

...

</CassandraUserInfo>

</ListWrapper>

</GetCloudianUserListResponse>

14.11. GET /user/mfa/list

GET /user/mfa/list Get a list of a user's MFA devices

14.11.1. Syntax

GET /user/mfa/list?[userId=string&groupId=string][canonicalUserId=string]

There is no request payload.

14.11.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

226

14.12. GET /user/password/verify

14.11.3. Usage Notes

Use this method to retrieve information about the MFA device(s) currently activated for the specified Hyper-
Store account root user, if any.

14.11.4. Example Using cURL

The example below retrieves the MFA device that is activated for user "PubsUser1" in the "Pubs" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/mfa/list?userId=PubsUser1&groupId=Pubs'

The response payload is a JSON-formatted list ofMFADevice objects, which in this example is as follows.

{"MFADevices":[{"EnableDate":"2022-04-02T13:56:38Z","SerialNumber":"arn:aws:iam::

79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device"}]}

14.11.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Invalid parameter or missing required parameter

404 User inactive or not found

14.12. GET /user/password/verify

GET /user/password/verify Verify a user's supplied password

14.12.1. Syntax

GET /user/password/verify?userId=string&groupId=string&password=string

There is no request payload.

14.12.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

227

Chapter 14. user

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.12.3. Usage Notes

This method verifies that the supplied CMC password is the correct password for the user.

It also verifies that the user is not currently locked out by the CMC password lockout feature. If the user is cur-
rently locked out then password verification will fail even if the supplied password is the correct password for
the user.

14.12.4. Example Using cURL

The example below verifies the supplied password for a user "John" in the "QA" group.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/password/verify?userId=John&groupId=QA&password=P1a2s3s4!'

The response payload is a plain text value: "valid" or "invalid" or "expire" (password needs to be changed). In
this example the response is:

valid

The "valid" response indicates that the supplied password is the correct and still valid password for the user.

14.12.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or this method-specific
status code:

Status Code Description

400 Missing Required parameters : {userId, groupId, password}

14.13. GET /user/ratingPlan

GET /user/ratingPlan Get a user's rating plan content

14.13.1. Syntax

GET /user/ratingPlan?userId=string&groupId=string[®ion=string]

There is no request payload.

228

14.13. GET /user/ratingPlan

14.13.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.13.3. Example Using cURL

The example below retrieves the content of the rating plan that is assigned to user "John" in group "QA" in the
default service region.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/ratingPlan?userId=John&groupId=QA' \

| python -mjson.tool

The response payload is a JSON-formatted RatingPlan object, which in this example is as follows.

{

"currency": "USD",

"id": "Gold",

"mapRules": {

"BI": {

"ruleclassType": "BYTES_IN",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"BO": {

"ruleclassType": "BYTES_OUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HD": {

"ruleclassType": "HTTP_DELETE",

"rules": [

229

Chapter 14. user

{

"first": "0",

"second": "0"

}

]

},

"HG": {

"ruleclassType": "HTTP_GET",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"HP": {

"ruleclassType": "HTTP_PUT",

"rules": [

{

"first": "0",

"second": "0"

}

]

},

"SB": {

"ruleclassType": "STORAGE_BYTE",

"rules": [

{

"first": "100",

"second": "0.25"

},

{

"first": "0",

"second": "0.15"

}

]

}

},

"name": "Gold Rating Plan"

}

14.13.4. Response Element Descriptions

For descriptions of RatingPlan object elements see "PUT /ratingPlan Create a new rating plan" (page 134).

14.13.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

230

14.14. GET /user/ratingPlanId

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 Region {region} is not valid

14.14. GET /user/ratingPlanId

GET /user/ratingPlanId Get a user's rating plan ID

14.14.1. Syntax

GET /user/ratingPlanId?userId=string&groupId=string[®ion=string]

There is no request payload.

14.14.2. Parameter Descriptions

userId

(Mandatory, string) User identifier, unique within the group. This is the user ID that was supplied by the
user (or by whoever created the user) at the time of user account creation.

groupId

(Mandatory, string) Unique identifier of the group to which the user belongs.

region

(Optional, string) If your service deployment has multiple service regions, rating plan assignment is on a
per-region basis. Use the "region" parameter to indicate the service region for which to retrieve a rating
plan ID. If this parameter is not supplied, the default region is assumed.

14.14.3. Example Using cURL

The example below retrieves the rating plan ID for user "John" in group "QA" in the default service region.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/ratingPlanId?userId=John&groupId=QA'

The response payload is the rating plan identifier in plain text, which in this example is as follows.

Gold

14.14.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 Rating Plan does not exist

400 Missing Required parameters : {userId, groupId}

231

Chapter 14. user

Status Code Description

400 Region {region} is not valid

14.15. POST /user

POST /user Change a user's profile

14.15.1. Syntax

POST /user

The required request payload is a JSON-formatted UserInfo object.

14.15.2. Example Using cURL

The example below modifies the user profile that was created in the PUT /user example. Again the UserInfo
object is specified in a text file named user_John.txt which is then referenced as the data input to the cURL
command.

curl -X POST -H "Content-Type: application/json" -k -u sysadmin:password \

-d @user_John.txt https://localhost:19443/user

Note that in editing the UserInfo object in the user_John.txt file before doing the POST operation you could edit
any attribute except for the "userId" or "canonicalUserId" attributes. For an example UserInfo object see PUT
/user.

Note You cannot change the "userType" attribute of the default system administrator account. This is
not allowed.

14.15.3. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 User does not exist

400 Missing Required parameters : {userId, groupId, userType}

400 Invalid JSON object

400 Invalid User Name

232

14.16. POST /user/credentials

14.16. POST /user/credentials

POST /user/credentials Post a user's supplied S3 credential

14.16.1. Syntax

POST /user/credentials?userId=string&groupId=string&accessKey=urlencoded-string

&secretKey=urlencoded-string[&iamUser=urlencoded-string]

There is no request payload.

14.16.2. Parameter Descriptions

userId

(Mandatory, string) User identifier, unique within the group. This is the user ID that was supplied by the
user (or by whoever created the user) at the time of user account creation.

groupId

(Mandatory, string) Unique identifier of the group to which the user belongs.

Note The group ID for system admins is "0".

accessKey

(Mandatory, string) The S3 access key. Must be URL-encoded.

Note An S3 security credential is a key pair consisting of an "access key" (public key) and a
"secret key" (private key).

Note If the iamUser parameter is used, the accessKey value must match against the pattern [a-
zA-Z0-9_] and must be at least 16 characters and no more than 128 characters long.

secretKey

(Mandatory, string) The S3 secret key. Must be URL-encoded.

iamUser

(Optional, string) IAM user name, if the POST /user/credentials call is being used to supply security cre-
dentials for an IAM user rather than for a HyperStore account root user. Note that:

l Using this parameter is appropriate if an IAM user has an access key and secret key that were
created in an external system, and you want the IAM user to be able to use those same security
credentials for accessing HyperStore services.

l The IAM user must exist in the HyperStore system (the IAM user must be created through the
CMC or through use of the HyperStore IAM Service by a third party IAM client application).

l If the iamUser parameter is used with this Admin API call, the userId and groupId parameters
must be used to identify the HyperStore account root user under whom the IAM user exists.

233

Chapter 14. user

l The iamUser value must match against the pattern [a-zA-Z0-9_+=,.@-]+. The minimum length is
1, maximum 64. Example valid value: tom@company.com

l Must be URL-encoded.

14.16.3. Usage Notes

HyperStore does not support commas in the accessKey value or the secretKey value. If a comma is present
in either of those values, the POST request will fail with a 400 "Bad Request" error.

14.16.4. Example Using cURL

The example below posts a supplied S3 access key and secret key for user "John" in the "QA" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/credentials?userId=John&groupId=QA&accessKey=21289&secretKey=o5jqJtq'

Note To allow the single quote-enclosed 'https:...' segment in the above example to be shown on one
line, the access key and secret key values are truncated.

14.16.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId, accessKey, secretKey}

400 User does not exist (or IAM user does not exist, if iamUser parameter is used)

400 Invalid characters in accessKey or secretKey

403
Reached maximum number of credentials allowed (or maximum number for the IAM user,
if iamUser parameter is used)

409 Access Key already exists

14.17. POST /user/credentials/status

POST /user/credentials/status Deactivate or reactivate a user's S3 credential

14.17.1. Syntax

POST /user/credentials/status?accessKey=urlencoded-string[&isActive=bool]

There is no request payload.

234

14.18. POST /user/mfa/createDevice

14.17.2. Parameter Descriptions

accessKey

(Mandatory, string) The S3 access key from the key pair. Must be URL-encoded if the key includes non-
ASCII characters.

Note An S3 security credential is a key pair consisting of an "access key" (public key) and a
"secret key" (private key).

isActive

(Optional, boolean) The status to apply to the credentials — true for active or false for inactive. Defaults
to false if this parameter is not supplied in the request.

14.17.3. Example Using cURL

The example below deactivates a user's S3 credential. Note that since each S3 access key is unique in the sys-
tem, you do not need to specify the user to whom the key is assigned.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/credentials/status?accessKey=21289bab1738ffdc792a&isActive=false'

14.17.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required parameters : {accessKey}

400 Invalid Access Key

14.18. POST /user/mfa/createDevice

POST /user/mfa/createDevice Create a virtual MFA device for a user

14.18.1. Syntax

POST /user/mfa/createDevice?[userId=string&groupId=string][canonicalUserId=string]

&virtualMFADeviceName=string[&path=string]

There is no request payload.

14.18.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId

235

Chapter 14. user

(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

virtualMFADeviceName

(Mandatory, string) Name to give to the virtual MFA device. The name can include upper and lowercase
alphanumeric characters with no spaces. You can also include any of the following characters: _+=,.@-

Note MFA device names are case-insensitive (and so, you cannot have one device named
MyDevice and another one named mydevice -- these would be treated as the same device).

path

(Optional, string) The path for the virtual MFA device. The path must begin and end with forward
slashes. If this parameter is omitted from the request, the path defaults to a forward slash (/) by itself.

14.18.3. Usage Notes

Use this method to create a (representation of a) virtual MFA device under a HyperStore user account root.
When first created, the MFA device is not enabled (is not activated for the user's account). After the MFA
device is created you can activate the device for the user by calling the POST /user/mfa/enableDevice
method.

14.18.4. Example Using cURL

The example below creates a virtual MFA device in the account of the user "PubsUser1" in the "Pubs" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/mfa/createDevice?userId=PubsUser1&groupId=Pubs&

virtualMFADeviceName=myDevice'

The response is as below. Note that:

l The serialNumber will be need when a POST /user/mfa/enableDevice call is submitted to activate the
device for the HyperStore account root user

l The base32StringSeed and qrCodePNG are sensitive data and should be securely destroyed after the
virtual MFA device is enabled.

{"base32StringSeed":"RVI3R1lLS1ZKMzNCSzJLT0tSNFhLUUdSWFk1WVhQNTRTTTIyUEs2REpRNk

VESlZJVTRLVFdURFhGMjVBTlpJRQ==","enableDate":null,"qrCodePNG":"iVBORw0KGgoAAAAN

SUhEUgAAAPoAAAD6AQAAAACgl2eQAAACdElEQVR4Xu2W0Y3jMAxEpUak/rvYUqRGqJtHZgE7OCzu4zL

7Y8FwEvsFGJDDkdr5eX219ydv6wFqPUCtB6j1ALX+EVit9b1G62eNqR9jbh5Zga1rx+irr7n5EZO7F1

ho7MW1HqmSn2Zgq0j9HMlb80T/FYCOqVStoxbRboAKHZVodb5sfudlBNK09/UXV38WYEWXa0MiA/r7q

236

14.19. POST /user/mfa/deactivateDevice

Q9YUxXSi9FYatmYwSg7AflUZqVHUvnyjP5lBU6aFE62kXE1u+qWF1B4qS7ySJs5QDnAtWwAHskbzJBE

vHNtlgGgMwpwEiymOrVQSe+cgEySLqVP4CD6gxPI5CpMnZLUReEuhTIAbKSSRZr1XbtqDO5G4GRRot7

Kv2RISjQCG5N0sJ2dG0OmHfzJB0iXYmundzPKqkhWILtEenHJObWnJWQDCAtiTBNzeIlZhFoBdCFzLp

VLOyzluk/354GgOpoV9jJeKEfz0wlkdmSB2E3UNT7HpVAGgEeZIK+KZZjUsgGkd47OwShNGcL0TiuAW

RQhKlb6RN915LsWygBIJDnGU+5Tx4v9OmLYAG1lQxGOriBEZpAn2TAbUMTIQ96mZSFmTCuQgjBsfgn03

jd3AyBhmaPsbnm+mOrY1bQOINC0kAbbZR79wQugDq9w1M2bpN6n+/MAHmVmOGIEQ0uKmAEVStXJI1Yr5

4p4q+SngYSkTBsrzs0ppoFOQJJUKQrUsS9Jhn2twMYxgwjhsDNyd7sFqQMgzDU4pCm7avbqJtIDcOBVx

Qa2UYr2W7NcgEJU2rJRRFinfE4gmdW49Brj1OgaAUyLUMKUZmmOJ7qdwA/rAWo9QK0HqPUAtf4D8Ac0m

4WgtkTYDwAAAABJRU5ErkJggg==",

"serialNumber":"arn:aws:iam::9886099a0803541bc4766213e6ad716e:mfa/myDevice",

"user":null}

14.18.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 User is inactive or is not found

400 Invalid parameter or missing required parameter

404 Specified user not found

409 Virtual MFA device already exists

14.19. POST /user/mfa/deactivateDevice

POST /user/mfa/deactivateDevice Deactivate a user's MFA device

14.19.1. Syntax

POST /user/mfa/deactivateDevice?[userId=string&groupId=string]

[canonicalUserId=string]&serialNumber=string

There is no request payload.

14.19.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

237

Chapter 14. user

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

serialNumber

Serial number of the MFA device to deactivate. This takes the form of an ARN. Here is an example of the MFA
serial number format used for HyperStore:

arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device

14.19.3. Usage Notes

Use this method to deactivate an MFA device that is currently assigned to a HyperStore account root user. If no
MFA device is active for the user, the user will no longer be required to provide an MFA code when logging into
the CMC.

14.19.4. Example Using cURL

The example below deactivates the MFA device that's assigned to user "PubsUser1" in the "Pubs" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/mfa/deactivateDevice?userId=PubsUser1&groupId=Pubs&

serialNumber=arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device'

14.19.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 User is inactive or is not found

400 Invalid parameter or missing required parameter

404 Specified MFA Device does not exist or does not belong to specified user

14.20. POST /user/mfa/enableDevice

POST /user/mfa/enableDevice Activate an MFA device for a user

14.20.1. Syntax

POST /user/mfa/enableDevice?[userId=string&groupId=string]

[canonicalUserId=string]&serialNumber=string&

authenticationCode1=string&authenticationCode2=string

There is no request payload.

238

14.20. POST /user/mfa/enableDevice

14.20.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

serialNumber

Serial number of the MFA device to activate for the user. This takes the form of an ARN. Here is an example of
the MFA serial number format used for HyperStore:

arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device

The serial number of the device is part of the response to the POST /user/mfa/createDevice call that you used
to create the device.

authenticationCode1

First MFA authentication code submitted by the user during the activation process.

authenticationCode2

Second successive MFA authentication code submitted by the user during the activation process.

14.20.3. Usage Notes

After using the Admin API POST /user/mfa/createDevice method to create a virtual MFA device for a Hyper-
Store account root user, use the POST /user/mfa/enableDevice method to activate the device for that account
root user. After the device has been activated for the user, the user will be required to enter an MFA code when
logging into the CMC (after entering their user name and password).

14.20.4. Example Using cURL

The example below enables an MFA device for HyperStore account root user "PubsUser1" in the "Pubs"
group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/mfa/enableDevice?userId=PubsUser1&groupId=Pubs&

serialNumber=arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device&

authenticationCode1=817156&authenticationCode2=379924'

239

Chapter 14. user

14.20.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

403 Invalid MFA authentication code

404 User is not found or MFA device is not found

409 Exceeding max MFA devices or this MFA device is already enabled on another user

14.21. POST /user/mfa/resyncDevice

POST /user/mfa/resyncDevice Resync a user's MFA device

14.21.1. Syntax

POST /user/mfa/resyncDevice?[userId=string&groupId=string]

[canonicalUserId=string]&serialNumber=string&

authenticationCode1=string&authenticationCode2=string

There is no request payload.

14.21.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

serialNumber

Serial number of the MFA device to resync for the user. This takes the form of an ARN. Here is an example of
the MFA serial number format used for HyperStore:

arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device

240

14.22. POST /user/mfa/verify

authenticationCode1

First MFA authentication code submitted by the user during the resync process.

authenticationCode2

Second successive MFA authentication code submitted by the user during the resync process.

14.21.3. Usage Notes

Use this method to resync an MFA device that's assigned to a HyperStore account root user.

14.21.4. Example Using cURL

The example below resyncs the MFA device that's assigned to user "PubsUser1" in the "Pubs" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/mfa/resyncDevice?userId=PubsUser1&groupId=Pubs&

serialNumber=arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device&

authenticationCode1=921317&authenticationCode2=565602'

14.21.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

403 Invalid MFA authentication code

404 User is not found or MFA device is not found

14.22. POST /user/mfa/verify

POST /user/mfa/verify Verify a user's supplied MFA code

14.22.1. Syntax

POST /user/mfa/verify?[userId=string&groupId=string][canonicalUserId=string]&serialNumber=string&

authenticationCode=string

There is no request payload.

14.22.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the

241

Chapter 14. user

group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

serialNumber

Serial number of the MFA device that is assigned to the user. This takes the form of an ARN. Here is an
example of the MFA serial number format used for HyperStore:

arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device

authenticationCode

MFA authentication code submitted by the user.

14.22.3. Usage Notes

Use this method to verify an MFA code supplied by a HyperStore account root user. The CMC uses this method
when a user for whom MFA is enabled logs into the console.

14.22.4. Example Using cURL

The example below verifies a MFA code that's supplied by user "PubsUser1" in the "Pubs" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/mfa/verify?userId=PubsUser1&groupId=Pubs&

serialNumber=arn:aws:iam::79da61faead93bdb326419974418c93e:mfa/root-account-mfa-device&

authenticationCode=632615'

14.22.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or invalid parameters

403 Invalid MFA authentication code

404 User is not found or MFA device is not found

242

14.23. POST /user/password

14.23. POST /user/password

POST /user/password Create or change a user's password

14.23.1. Syntax

POST /user/password?userId=string&groupId=string&password=string[&oldpassword=string]

There is no request payload.

14.23.2. Parameter Descriptions

userId

(Mandatory, string) User identifier, unique within the group. This is the user ID that was supplied by the
user (or by whoever created the user) at the time of user account creation.

groupId

(Mandatory, string) Unique identifier of the group to which the user belongs.

Note The group ID for system admins is "0".

password

(Mandatory, string) The user’s new CMC password.

Passwords must meet the following conditions by default:

l Minimum of nine characters, maximum of 64 characters

l Must contain:

o At least one lower case letter

o At least one upper case letter

o At least one number

o At least one special character such as !, @, #, $, %, ^, etc.

Note You can optionally configure HyperStore to require a higher minimum password length.
You can also optionally configure additional password restrictions such as a password expir-
ation period, a restriction against a user's new password being too similar to their previous pass-
word, a restriction on password reuse, and a restriction against too-frequent password changes.
In common.csv, see user_password_min_length and the subsequent settings.

oldpassword

(Optional, string) The user's existing password (which will be replaced by the new password that's spe-
cified by the password parameter). If the oldpassword is supplied with the request, the system will verify
that it correctly matches the user's existing password in the system. If it does not match, the POST /user-
/password request fails with a 400 Bad Request error.

243

Chapter 14. user

Note You must supply the oldpassword parameter if you want the system to apply the con-
figurable check against the new password being too similar to the existing password. This check
is controlled by the setting common.csv: user_password_dup_char_ratio_limit and is disabled
by default. For the check to work you must first configure the setting, and then supply the existing
password as well as the new password when making POST /user/password API calls.

14.23.3. Usage Notes

Use this method to create or update a user's CMC login password.

If you are updating an existing password for a user, use the "password" parameter to specify the new pass-
word, not the existing password.

Note For "SystemAdmin" users this password also serves as the user's HyperStore Shell password.
For more information see the "HyperStore Shell (HSH)" section of the Cloudian HyperStore Admin-
istrator's Guide.

14.23.4. Example Using cURL

The example below posts a CMC password for the user "John" in the "QA" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/password?userId=John&groupId=QA&password=P1a2s3s4!'

14.23.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

204 User does not exist

400 Missing Required parameters : {userId, groupId, password}

400 Exceeded max password length

400 Password strength is too weak.

400 Invalid oldpassword

14.24. POST /user/ratingPlanId

POST /user/ratingPlanId Assign a rating plan to a user

14.24.1. Syntax

POST /user/ratingPlanId?userId=string&groupId=string&ratingPlanId=string[®ion=string]

244

14.25. POST /user/unlock

There is no request payload.

14.24.2. Parameter Descriptions

userId

(Mandatory, string) User identifier, unique within the group. This is the user ID that was supplied by the
user (or by whoever created the user) at the time of user account creation.

groupId

(Mandatory, string) Unique identifier of the group to which the user belongs.

ratingPlanId

(Mandatory, string) Unique identifier of the rating plan to assign to the user, for billing purposes.

region

(Optional, string) If your service deployment has multiple service regions, rating plan assignment is on a
per-region basis. With the POST /user/ratingPlanId method, use the "region" parameter to indicate the
service region in which to apply the specified rating plan. For example, if user-
Id=Cody&groupId=Engineering&ratingPlanId=Gold®ion=East, then the Gold rating plan will be
applied to user Cody's service activity in the East region.

If this parameter is omitted the default service region is assumed.

14.24.3. Example Using cURL

The example below assigns the "Gold" rating plan to user "John" in the "QA" group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/ratingPlanId?userId=John&groupId=QA&ratingPlanId=Gold'

14.24.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId, ratingPlanId}

400 Region {region} is not valid

14.25. POST /user/unlock

POST /user/unlock Unlock a locked-out user

14.25.1. Syntax

POST /user/unlock?[userId=string&groupId=string][canonicalUserId=string]

245

Chapter 14. user

There is no request payload.

14.25.2. Parameter Descriptions

userId, groupId, canonicalUserId

(Mandatory [to use one approach or the other], string) Specify the user either by supplying the userId
(the ID provided by the user at the time of user account creation) in combination with the groupId of the
group to which the user belongs, or by supplying the canonicalUserId (the unique ID generated for the
user by the system).

If you use the "userId" and "groupId" parameters, do not use the "canonicalUserId" parameter. If you use
the "canonicalUserId" parameter, do not use the "userId" or "groupId" parameters.

Note
* You can retrieve a user's canonical user ID by using the Admin API methods GET /user or GET
/user/list.
* The group ID for system admins is "0".

14.25.3. Usage Notes

This method releases the lock on a user who is locked out from logging into the CMC. A user may become tem-
porarily locked out of the CMC if you have the password lock-out feature enabled in your system, and within a
defined time interval the user makes too many login attempts using an incorrect password. The password-lock
feature is configurable by common.csv: user_password_lock_enabled and the other user_password_lock_*
settings in common.csv.

For a locked-out user, once the user stops attempting to log in with an incorrect password the lock-out releases
automatically after a configurable time interval (30 minutes by default). Alternatively, the POST /user/unlock
method lets you release the lock immediately.

14.25.4. Example Using cURL

The example below unlocks the user John in the QA group.

curl -X POST -k -u sysadmin:password \

'https://localhost:19443/user/unlock?userId=John&groupId=QA'

The second example uses the GET /user/islocked method to confirm that John is now unlocked.

curl -X GET -k -u sysadmin:password \

'https://localhost:19443/user/islocked?userId=John&groupId=QA'

false

14.25.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing or conflicting parameters : {userId, groupId,canonicalUserId}

246

14.26. PUT /user

Status Code Description

400 User/Group does not exist

14.26. PUT /user

PUT /user Create a new user

14.26.1. Syntax

PUT /user

The required request payload is a JSON-formatted UserInfo object. See example below.

Note This method does not create a CMC login password for the new user. After creating a new user
with the PUT /user method, use the POST /user/passwordmethod to a create a CMC password for the
user.

14.26.2. Example Using cURL

The example below creates a new user "John" in the "QA" group. In this example the JSON-formatted UserInfo
object is specified in a text file named user_John.txt which is then referenced as the data input to the cURL
command.

curl -X PUT -H "Content-Type: application/json" -k -u sysadmin:password \

-d @user_John.txt https://localhost:19443/user | python -mjson.tool

The response payload is a JSON-formatted UserInfo object.

Immediately below is the input file for this example (the UserInfo object submitted in the request). Below that is
the response payload for this example (the UserInfo object returned in the response). The difference between
the two is that the UserInfo object submitted in the request does not include a "canonicalUserId" attribute,
whereas the UserInfo object returned in the response body does have this attribute. The system has generated
a canonical user ID for the new user.

Request payload:

{

"active": "true",

"address1": "",

"address2": "",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

247

Chapter 14. user

"userType": "User",

"website": "",

"zip": ""

}

Response payload:

{

"active": "true",

"address1": "",

"address2": "",

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4",

"city": "",

"country": "",

"emailAddr": "",

"fullName": "John Thompson",

"groupId": "QA",

"ldapEnabled": false,

"phone": "",

"state": "",

"userId": "John",

"userType": "User",

"website": "",

"zip": ""

}

248

14.26. PUT /user

14.26.3. Request and Response Element Descriptions

active

(Optional, string) Whether the user is active — "true" or "false".

l "true" indicates an active user.

l "false" indicates that the user is not an active user. Non-active users are users who are in one of
these statuses:

o Inactive — These users have had their status set to inactive via the POST /user method
(with UserInfo object attribute "active" set to false). These users' stored S3 objects still
exist, but their S3 access credentials have been deactivated and they cannot log into the
CMC.

o Deleted — These users have been deleted from the S3 service via the DELETE /user
method. Their S3 access credentials have been deleted, and their S3 buckets and
objects have been deleted and are unrecoverable. (These users cannot be retrieved
through the GET /user method — they can only be retrieved through the GET /user/list
method.)

o Deleting — These users are in the process of being deleted from the S3 service via the
DELETE /user method. The deletion process for these users has not yet completed.
(These users cannot be retrieved through the GET /user method — they can only be
retrieved through the GET /user/listmethod.)

If the "active" attribute is unspecified for a PUT /useroperation, it defaults to "true". If the "active" attribute
is unspecified for a POST /useroperation, the user will retain her existing status.

Example:

"active": "true"

Note The only way to retrieve a list of users who have been deleted or are in the process of
being deleted is to specify "deleted" or "deleting" for the userStatus request parameter with a
GET /user/list request. In the response body, the "active" attribute for such users will say "false".

address1

(Optional, string) User’s street address line 1. Example:

"address1": "123 Main St."

Note In the "address1", "address2", "zip", "email", "website", and "phone" fields, the Admin Ser-
vice prohibits the use of any of these characters:

` | ; & > <

address2

(Optional, string) User’s street address line 2. Example:

"address2": ""

canonicalUserId

(Optional, string) Canonical user ID, globally unique within the HyperStore system. This is automatically

249

Chapter 14. user

generated by the system when a new user is created. The canonicalUserId is unique per user across
the system and over time, even in the case where a user with a specific <groupId>|<userId> com-
bination is deleted from the system and then a new user is subsequently added with the same
<groupId>|<userId> combination. The new user will be assigned a different canonicalUserId than the
deleted user. This allows past and present users to be uniquely identified for purposes such as usage
reporting.

The client must not supply a canonicalUserId in a PUT /userrequest and does not need to supply
one in a POST /userrequest.

Example:

"canonicalUserId": "bd0796cd9746ef9cc4ef656ddaacfac4"

city

(Optional, string) User’s city. Example:

"city": "Portsmouth"

country

(Optional, string) User’s country. Example:

"country": "US"

emailAddr

(Optional, string) User’s email address. Example:

"emailAddr": "me@mail.com"

fullName

(Optional, string) User’s full name. By default the maximum length is 64 characters. This maximum is
configurable by the setting common.csv: cloudian_userid_length.

Example:

"fullName": "John Thompson"

groupId

(Mandatory, string) Group ID of the group to which the user belongs.

Note For all SystemAdmin type users the groupId is "0".

Example:

"groupId": "QA"

Second example (for a system administrator):

"groupId": "0"

ldapEnabled

(Optional, boolean) Whether the CMC authenticates the user by checking an LDAP system, true or
false. Defaults to false. If the user is enabled for LDAP, when authenticating the user the CMC uses the
LDAP connection information configured for the user's group. For more information see LDAP Integ-
ration. If the user is not LDAP enabled, the CMC authenticates the user by requiring a password that the

250

14.26. PUT /user

CMC maintains.

Example:

"ldapEnabled": false

phone

(Optional, string) User’s phone number. Example:

"phone": "890-123-4567"

state

(Optional, string) User’s state. Example:

"state": "NH"

userId

(Mandatory, string) User ID.

l Only letters, numbers, dashes, and underscores are allowed.

l By default the maximum length is 64 characters. This maximum is configurable by the setting
common.csv: cloudian_userid_length.

l The following IDs are reserved for system use and are not available to individual users: "anonym-
ous", "public", "null", "none", "admin", "0".

Example:

"userId": "John"

Note The character rules for the user IDs of system administrators are more strict:
* Maximum length = 26 characters (this is not configurable)
* Only lower case letters, numbers, and underscores are allowed
* Must start with a letter
* Cannot end with an underscore

userType

(Mandatory, string) User type. One of {"User","GroupAdmin","SystemAdmin"}. Example:

"userType": "User"

Note
* If you set the userType to "SystemAdmin", set the groupId to "0".
* When you create a "SystemAdmin" user the system automatically creates a corresponding
HyperStore Shell user. For more information see the "HyperStore Shell (HSH)" section of the
Cloudian HyperStore Administrator's Guide.

website

(Optional, string) User’s website URL. Example:

"website": "www.me.com"

zip

(Optional, string) User’s postal zip code. Example:

251

Chapter 14. user

"zip": "12345"

14.26.4. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing required attributes : {userId, groupId, userType}

400 Invalid JSON object

400 Problem accessing /user

400 User Id is not allowed : {userId}

400 Invalid User Name

409 Problem accessing /user

14.27. PUT /user/credentials

PUT /user/credentials Create a new S3 credential for a user

14.27.1. Syntax

PUT /user/credentials?userId=string&groupId=string

There is no request payload.

14.27.2. Parameter Descriptions

userId

(Mandatory, string) User identifier, unique within the group. This is the user ID that was supplied by the
user (or by whoever created the user) at the time of user account creation.

groupId

(Optional, string) Unique identifier of the group to which the user belongs.

Note The group ID for system admins is "0".

14.27.3. Example Using cURL

The example below creates a new S3 credential for user "John" in the "QA" group.

curl -X PUT -k -u sysadmin:password \

'https://localhost:19443/user/credentials?userId=John&groupId=QA' \

| python -mjson.tool

252

14.27. PUT /user/credentials

The response payload is a JSON-formatted SecurityInfo object, which in this example is as follows.

{

"accessKey": "28d945de2a2623fc9483",

"active": true,

"createDate": 1502285593100,

"expireDate": null,

"secretKey": "j2OrPGHF69hp3YsZHRHOCWdAQDabppsBtD7kttr9"

}

14.27.4. Response Element Descriptions

accessKey

(String) User’s access key (public key) for the HyperStore S3 service. Example:

"accessKey": "009c156c79e64e0e4928

active

(Boolean) Whether the credential is active, true or false. An inactive credential cannot be used to access
the HyperStore S3 service. Example:

"active": true

createDate

(String) Creation timestamp for the credential in UTC milliseconds. Example:

"createDate": 1502279336024

expireDate

(String) Credential expiration date. In the current version of HyperStore this attribute's value is always
null. Example:

"expireDate": null

secretKey

(String) User’s secret key (private key) for the HyperStore S3 service. Example:

"secretKey": "wVHk2nA0M03RWSMIrFHFAtuhow6S1DKN0gWjPhDG"

14.27.5. Response Codes

This method will return one of the "Common Response Status Codes" (page 13) or one of these method-spe-
cific status codes:

Status Code Description

400 Missing Required parameters : {userId, groupId}

400 User does not exist

403 Reached maximum number of credentials allowed

253

	Chapter 1. Introduction
	1.1. HyperStore Admin API Introduction
	1.1.1. Admin API Behavior in Multi-Region Systems
	1.1.2. Admin API Logging

	1.2. Admin API Methods List
	1.3. Common Status Codes and Headers
	1.3.1. Common Response Status Codes
	1.3.2. Common Request and Response Headers

	1.4. cURL Examples
	1.5. HTTP and HTTPS for Admin API Access
	1.6. HTTP(S) Basic Authentication for Admin API Access
	1.6.1. Checking the Admin API's Current HTTP(S) Basic Auth Password
	1.6.2. Changing the Admin API's HTTP(S) Basic Auth Password

	1.7. Role-Based Access to Admin API Operations
	1.7.1. Comparing the Admin API to the IAM API with RBAC Extensions
	1.7.2. Administrative Actions Supported by the IAM API
	1.7.3. Giving Administrative Action Privileges to IAM Users
	1.7.4. Using admin_client.py to Call the IAM Service Extensions for Administrative Actions

	Chapter 2. allowlist
	2.1. GET /allowlist
	2.2. POST /allowlist
	2.3. POST /allowlist/list

	Chapter 3. billing
	3.1. GET /billing
	3.2. POST /billing

	Chapter 4. bppolicy
	4.1. GET /bppolicy/bucketsperpolicy
	4.2. GET /bppolicy/listpolicy

	Chapter 5. bucketops
	5.1. GET /bucketops/id
	5.2. GET /bucketops/gettags
	5.3. POST /bucketops/purge

	Chapter 6. group
	6.1. DELETE /group
	6.2. GET /group
	6.3. GET /group/list
	6.4. GET /group/ratingPlanId
	6.5. POST /group
	6.6. POST /group/ratingPlanId
	6.7. PUT /group

	Chapter 7. monitor
	7.1. DELETE /monitor/notificationrule
	7.2. GET /monitor/events
	7.3. GET /monitor/nodelist
	7.4. GET /monitor/host
	7.5. GET /monitor
	7.6. GET /monitor/history
	7.7. GET /monitor/notificationrules
	7.8. POST /monitor/acknowledgeevents
	7.9. POST /monitor/notificationruleenable
	7.10. POST /monitor/notificationrule
	7.11. PUT /monitor/notificationrule

	Chapter 8. permissions
	8.1. GET /permissions/publicUrl
	8.2. POST /permissions/publicUrl

	Chapter 9. qos
	9.1. DELETE /qos/limits
	9.2. GET /qos/limits
	9.3. POST /qos/limits

	Chapter 10. ratingPlan
	10.1. DELETE /ratingPlan
	10.2. GET /ratingPlan
	10.3. GET /ratingPlan/list
	10.4. POST /ratingPlan
	10.5. PUT /ratingPlan

	Chapter 11. system
	11.1. GET /system/audit
	11.2. GET /system/bucketcount
	11.3. GET /system/bucketlist
	11.4. GET /system/bucketusage
	11.4.1. Syntax
	11.4.2. Parameter Descriptions
	11.4.3. Usage Notes
	11.4.4. Example Using cURL
	11.4.5. Response Codes

	11.5. GET /system/bytecount
	11.6. GET /system/bytestiered
	11.7. GET /system/dcnodelist
	11.8. GET /system/groupbytecount
	11.9. GET /system/groupobjectcount
	11.10. GET /system/license
	11.11. GET system/objectcount
	11.12. GET /system/objectlockenabled
	11.13. GET /system/token/challenge
	11.14. GET /system/version
	11.15. POST /system/processProtectionPolicy
	11.16. POST /system/repairusercount

	Chapter 12. tiering
	12.1. DELETE /tiering/credentials
	12.2. DELETE /tiering/azure/credentials
	12.3. DELETE /tiering/spectra/credentials
	12.4. GET /tiering/credentials
	12.5. GET /tiering/credentials/src
	12.6. GET /tiering/azure/credentials
	12.7. GET /tiering/spectra/credentials
	12.8. POST /tiering/credentials
	12.9. POST /tiering/azure/credentials
	12.10. POST /tiering/spectra/credentials

	Chapter 13. usage
	13.1. DELETE /usage
	13.2. GET /usage
	13.3. POST /usage/bucket
	13.4. POST /usage/repair
	13.5. POST /usage/repair/bucket
	13.6. POST /usage/repair/dirtyusers
	13.7. POST /usage/repair/user
	13.8. POST /usage/rollup
	13.9. POST /usage/storage
	13.10. POST /usage/storageall

	Chapter 14. user
	14.1. DELETE /user
	14.2. DELETE /user/credentials
	14.3. DELETE /user/deleted
	14.4. DELETE /user/mfa/deleteDevice
	14.5. GET /user
	14.6. GET /user/credentials
	14.7. GET /user/credentials/list
	14.8. GET /user/credentials/list/active
	14.9. GET /user/islocked
	14.10. GET /user/list
	14.11. GET /user/mfa/list
	14.12. GET /user/password/verify
	14.13. GET /user/ratingPlan
	14.14. GET /user/ratingPlanId
	14.15. POST /user
	14.16. POST /user/credentials
	14.17. POST /user/credentials/status
	14.18. POST /user/mfa/createDevice
	14.19. POST /user/mfa/deactivateDevice
	14.20. POST /user/mfa/enableDevice
	14.21. POST /user/mfa/resyncDevice
	14.22. POST /user/mfa/verify
	14.23. POST /user/password
	14.24. POST /user/ratingPlanId
	14.25. POST /user/unlock
	14.26. PUT /user
	14.27. PUT /user/credentials

